Reputation: 188
Im' trying to replace all pixels of input image with closest available RGB. I have a array contain color and input image. Here is my code, it give me an output image as expected, BUT it take very LONG time( about a min) to process one image. Can anybody help me improve the code? Or if you have any other suggestions, please help.
UIGraphicsBeginImageContextWithOptions(CGSizeMake(CGImageGetWidth(sourceImage),CGImageGetHeight(sourceImage)), NO, 0.0f);
//Context size I keep as same as original input image size
//Otherwise, the output will be only a partial image
CGContextRef context;
context = UIGraphicsGetCurrentContext();
//This is for flipping up sidedown
CGContextTranslateCTM(context, 0, self.imageViewArea.image.size.height);
CGContextScaleCTM(context, 1.0, -1.0);
// init vars
float d = 0; // squared error
int idx = 0; // index of palette color
int min = 1000000; // min difference
UIColor *oneRGB; // color at a pixel
UIColor *paletteRGB; // palette color
// visit each output color and determine closest color from palette
for(int y=0; y<sizeY; y++) {
for(int x=0; x<sizeX; x++) {
// desired (avg) color is one pixel of scaled image
oneRGB = [inputImgAvg colorAtPixel:CGPointMake(x,y)];
// find closest color match in palette: init idx with index
// of closest match; keep track of min to find idx
min = 1000000;
idx = 0;
CGContextDrawImage(context,CGRectMake(xx, yy, 1, 1),img);
}
}
UIImage *output = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
self.imageViewArea.image = output;
Upvotes: 1
Views: 1407
Reputation: 308392
The usual answer is to use a k-d tree or some other Octree structure to reduce the number of computations and comparisons that have to be done at each pixel.
I've also had success with partitioning the color space into a regular grid and keeping a list of possible closest matches for each part of the grid. For example you can divide the (0-255) values of R,G,B by 16 and end up with a grid of (16,16,16) or 4096 elements altogether. Best case is that there's only one member of the list for a particular grid element and no need to traverse the list at all.
Upvotes: 1
Reputation: 89222
This is a similar question (with no definitive answer), but the answer there has the code for directly accessing pixels from an image.
Quantize Image, Save List of Remaining Colors
You should do that rather than use CG functions for each get and set pixel. Drawing 1 pixel of an image onto another image is a lot slower than changing 3 bytes in a array.
Also, what's in ColorDiff -- you don't need perfect diffing as long as the closest pixel has the smallest diff. There may be room for pre-processing this list so that for each palette entry you have the smallest diff to the nearest other palette entry. Then, while looping through pixels, I can quickly check to see if the next pixel is within half that distance to the color just found (because photos tend to have common colors near each other).
If that's not a match, then while looping through the palette, if I am within half this distance to any entry, there is no need to check further.
Basically, this puts a zone around each palette entry where you know for sure that this one is the closest.
Upvotes: 1