Reputation: 1
I am trying to write a nested for loop in R, but am running into problems. I have researched as much as possible but can't find (or understand) the help I need. I am fairly new to R, so any advice on this looping would be appreciated, or if there is a simpler, more elegant way!
I have generated a file of daily temperatures for many many locations (I'll call them sites), and the file columns are set up like this:
year month day unix_time site_a site_b site_c site_d ... on and on
For each site (within each column), I want to run through the temperature values and create new columns (or a new data frame) with a number (a physiological rate) that corresponds with a range of those temperatures. (for example, temperatures less than 6.25 degrees have a rate of -1.33, temperatures between 6.25 and 8.75 have a rate of 0.99, etc). I have created a loop that does this for a single column of data. For example:
for(i in 1:dim(data)[1]){
if (data$point_a[i]<6.25) data$rate_point_a[i]<--1.33 else
if (data$point_a[i]>=6.25 && data$point_a[i]<8.75) data$rate_point_a[i]<-0.99 else
if (data$point_a[i]>=8.75 && data$point_a[i]<11.25) data$rate_point_a[i]<-3.31 else
if (data$point_a[i]>=11.25 && data$point_a[i]<13.75) data$rate_point_a[i]<-2.56 else
if (data$point_a[i]>=13.75 && data$point_a[i]<16.25) data$rate_point_a[i]<-1.81 else
if (data$point_a[i]>=16.25 && data$point_a[i]<18.75) data$rate_point_a[i]<-2.78 else
if (data$point_a[i]>=18.75 && data$point_a[i]<21.25) data$rate_point_a[i]<-3.75 else
if (data$point_a[i]>=21.25 && data$point_a[i]<23.75) data$rate_point_a[i]<-1.98 else
if (data$point_a[i]>=23.75 && data$point_a[i]<26.25) data$rate_point_a[i]<-0.21
}
The above code gives me a new column called "rate_site_a" that has my physiological rates. What I am having trouble doing is nesting this loop into another loop that runs through all of the columns. I have tried things such as:
for (i in 1:ncol(data)){
#for each row in that column
for (s in 1:length(data)){
if ([i]<6.25) rate1[s]<--1.33 else ...
I guess I don't know how to make the "if else" statement refer to the correct places. I know that I can't add the "rate" columns onto the existing data frame, as this would increase my ncol as I go through the loop, so need to put them into another data frame (though don't think this is my main issue). I am going to have many many many points to work through and would rather not have to do them one at a time, hence my attempt at a nested loop.
Any help would be much appreciated. Here is a link to some sample data if that is helpful. http://dl.dropbox.com/u/17903768/AVHRR_output.txt Thanks in advance!
Upvotes: 0
Views: 2501
Reputation:
I find that findInterval
is useful in situations like this instead of nested if else statements as it is already vectorized and returns the position within a vector of cutoff points.
DAT <- read.table("http://dl.dropbox.com/u/17903768/AVHRR_output.txt",header=TRUE,as.is=TRUE)
recode.fn <- function(x){
cut.vec <- c(0, seq(6.25,26.25,by = 2.5),Inf)
recode.val <- c(-1.33, 0.99, 3.31, 2.56,1.81,2.78,3.75,1.98, 0.21)
cut.interval <- findInterval(x, cut.vec, FALSE)
return(recode.val[cut.interval])
}
# Add on recoded data to existing data frame
DAT[,10:14] <- sapply(DAT[,5:9],FUN=recode.fn)
Upvotes: 0
Reputation: 21532
Andres answer is great for the apply
part to get you thru all the "temperature" columns. I'm stuck here without a copy of R (at work) to experiment with, but I suspect if you create a vector of your cutoff values
xcut <- c(0,6.25,8.75,.11.25,...
and just do
x <- xcut[(which(x>xcut))]
you'll have a much simpler bit of code, and easier to edit as well. (note: I added the 0
value to avoid problems with small x
values :-) )
Upvotes: 1
Reputation: 5691
here's another way using just logicals:
DAT <- read.table("http://dl.dropbox.com/u/17903768/AVHRR_output.txt",header=TRUE,as.is=TRUE)
recodecolumn <- function(x){
out <- vector(length=length(x))
out[x < 6.25] <- 1.33
out[x >= 6.25 & x < 8.75] <- .99
out[x >= 8.75 & x < 11.25] <- 3.31
out[x >= 11.25 & x < 13.25] <- 2.56
out[x >= 13.25 & x < 16.25] <- 1.81
out[x >= 16.25 & x < 18.75] <- 2.78
out[x >= 18.75 & x < 21.25] <- 3.75
out[x >= 21.25 & x < 23.75] <- 1.98
out[x >= 23.75 & x < 26.25] <- 0.21
out
}
NewCols <- apply(DAT[,5:9],2,recodecolumn)
colnames(NewCols) <- paste("rate",1928:1932,sep="_")
DAT <- cbind(DAT,NewCols)
Upvotes: 0
Reputation: 4826
Use ifelse which is vectorized:
ifelse(data$point<= 6.25,-1.33,ifelse(data$point<= 8.25,-0.99,ifelse(data$point<= 11.25,-3.31,....
.Until finished.
For instance:
datap=read.table('http://dl.dropbox.com/u/17903768/AVHRR_output.txt',header=T)
apply(datap[,5:9],2,function(x){
datap$x =
ifelse(x<=6.25,1.33,
ifelse(x<=8.75,-0.99,
ifelse(x<=11.25,-3.31,
ifelse(x<=13.75,-2.56,
ifelse(x<=16.25,-1.81,
ifelse(x<=18.75,-2.78,
ifelse(x<=21.25,-3.75,
ifelse(x<=23.75,-1.98,-0.21))))))))})
Upvotes: 1