phoxis
phoxis

Reputation: 61920

Segmenting words, and grouping hyphenated and apostrophe words from text

I need to segment words from a text. Some times the hyphenated words are written without hyphens, and apostrophe words are written without apostrophe. There are also similar issues like different spelling issues of same words (ex: color, colour), or single word which are written with spaces between them (ex: up to, upto, blankspace, blank space). I need to group these variants as one single representation and insert it into a set/hashmap or some other place. There can be also problems with accented character words written without accent characters (although i haven't faced them yet). Currently and cutting the words at any blankspace character and every non-alphanumerical, and then stemming them, and omitting stop words.

These indexes would be later used for document similarity checking and searching etc. Any suggestions how can i combat these problems? I have thought of an idea to match scanned word with a wordlist, but the problem is that the proper nouns and non-dictionary words will be omitted.

Info: My code is in Java

Upvotes: 5

Views: 1027

Answers (1)

Ruggiero Spearman
Ruggiero Spearman

Reputation: 6905

I think you should apply a combination of techniques.

1) For common spelling variants I would go with a dictionary-based method. Since they are common, I wouldn't worry about missing non-dictionary words. That should solve the color/colour problem.

2) For typos and other non-standard spelling variants you can apply Metaphone (http://en.wikipedia.org/wiki/Metaphone) algorithm to convert the tokens to a representation of their English pronunciations. Similar variants sound similar, thus you can match them to each other (e.g., Jon to John). You can also use edit-distance-based matching algorithms during the query to match very similar tokens with only a pair of characters juxtaposed or a character-dropped (e.g., Huseyin versus Housein).

3) For apostrophe and compound words with hyphen in between, you can store both variants. For example, "John's" would be indexed both as "John s" and "Johns". "blank-space" can be converted to (or stored along with) "blank space" and "blankspace".

4) For compound words without any hyphen in between, you could use an external library such as HyphenationCompoundWordTokenFilterFactory class of Solr (http://lucene.apache.org/solr/api/org/apache/solr/analysis/HyphenationCompoundWordTokenFilterFactory.html). Although it can use a dictionary, it doesn't have to. It is targeted to deal with compound words that are frequently encountered in German and similar languages. I see no reason why you can't apply it to English (you'll need to supply an English dictionary and hyphenation rule files).

Actually, the last point raises an important question. I don't think you are up to building your own search library from scratch. If that's true why don't you use Lucene (or Solr, which is based on Lucene), a Java-based search library which already have the methods and ways to deal with these problems? For example, the injection technique allows you to index both color and colour in the same place in a document; thus it doesn't matter whether you search for "colored cars" or "coloured cars" (assuming you take care of stemming). There are filters which does the phonetic indexing (http://lucene.apache.org/solr/api/org/apache/solr/analysis/PhoneticFilterFactory.html). There is even a FuzzyQuery component which lets you to allow a certain amount of edit distance to match similar terms (http://lucene.apache.org/core/old_versioned_docs/versions/3_2_0/api/all/org/apache/lucene/search/FuzzyQuery.html)

You will also need to decide at which point you want to deal with these problems: One extreme approach is to index all possible variants of these terms during the indexing and use the queries as they are. That will keep your query processing light, but will cost you a larger index (because of all the variants you need to store). The other extreme is to index the documents as they are and expand the queries during the searching. That will allow you to keep your index lean at the cost of heavier query processing. Phonetic indexing would require you to process both your documents during the indexing and the queries during the search. Fuzzy matching would be feasible only during the search time because, presumably, you wouldn't be able to store all edit variants of all terms in the index.

Upvotes: 3

Related Questions