Reputation:
I have a problem where one of my functions can't aquire the lock on one of the 2 mutexes I use. I did a basic debug in VC++2010 , setting some breakpoints and it seems if anywhere the lock is acquired, it does get unlocked.
The code that uses mutexes is as follow:
#define SLEEP(x) { Sleep(x); }
#include<windows.h>
void Thread::BackgroundCalculator( void *unused ){
while( true ){
if(MUTEX_LOCK(&mutex_q, 5) == 1){
if(!QueueVector.empty()){
//cut
MUTEX_UNLOCK(&mutex_q);
//cut
while(MUTEX_LOCK(&mutex_p,90000) != 1){}
//cut
MUTEX_UNLOCK(&mutex_p);
}
}
SLEEP(25);
}
}
Then somwhere else:
PLUGIN_EXPORT void PLUGIN_CALL
ProcessTick(){
if(g_Ticked == g_TickMax){
if(MUTEX_LOCK(&mutex_p, 1) == 1){
if(!PassVector.empty()){
PassVector.pop();
}
MUTEX_UNLOCK(&mutex_p);
}
g_Ticked = -1;
}
g_Ticked += 1;
}
static cell AMX_NATIVE_CALL n_CalculatePath( AMX* amx, cell* params ){
if(MUTEX_LOCK(&mutex_q,1) == 1){
QueueVector.push_back(QuedData(params[1],params[2],params[3],amx));
MUTEX_UNLOCK(&mutex_q);
return 1;
}
return 0;
}
init:
PLUGIN_EXPORT bool PLUGIN_CALL Load( void **ppData ) {
MUTEX_INIT(&mutex_q);
MUTEX_INIT(&mutex_p);
START_THREAD( Thread::BackgroundCalculator, 0);
return true;
}
Some variables and functions:
int MUTEX_INIT(MUTEX *mutex){
*mutex = CreateMutex(0, FALSE, 0);
return (*mutex==0);
}
int MUTEX_LOCK(MUTEX *mutex, int Timex = -1){
if(WaitForSingleObject(*mutex, Timex) == WAIT_OBJECT_0){
return 1;
}
return 0;
}
int MUTEX_UNLOCK(MUTEX *mutex){
return ReleaseMutex(*mutex);
}
MUTEX mutex_q = NULL;
MUTEX mutex_p = NULL;
and defines:
# include <process.h>
# define OS_WINDOWS
# define MUTEX HANDLE
# include <Windows.h>
# define EXIT_THREAD() { _endthread(); }
# define START_THREAD(a, b) { _beginthread( a, 0, (void *)( b ) ); }
Thread header file:
#ifndef __THREAD_H
#define __THREAD_H
class Thread{
public:
Thread ( void );
~Thread ( void );
static void BackgroundCalculator ( void *unused );
};
#endif
Well I can't seem to find the issue. After debugging I wanted to "force" aquiring the lock by this code (from the pawn abstract machine):
if (strcmp("/routeme", cmdtext, true) == 0){
new fromnode = NearestPlayerNode(playerid);
new start = GetTickCount();
while(CalculatePath(fromnode,14,playerid+100) == 0){
printf("0 %d",fromnode);
}
printf("1 %d",fromnode);
printf("Time: %d",GetTickCount()-start);
return 1;
}
but it keeps endless going on, CalculatePath calls static cell AMX_NATIVE_CALL n_CalculatePath( AMX* amx, cell* params )
That was a bit of surprise. Does anyone maybe see a mistake?
If you need the full source code it is available at:
http://gpb.googlecode.com/files/RouteConnector_174alpha.zip
Extra info: PLUGIN_EXPORT bool PLUGIN_CALL Load gets only executed at startup.
static cell AMX_NATIVE_CALLs get only executed when called from a vitrual machine
ProcessTick() gets executed every process tick of the application, after it has finished its own jobs it calls this one in the extensions.
For now I only tested the code on windows, but it does compile fine on linux.
Edit: removed linux code to shorten post.
Upvotes: 0
Views: 3943
Reputation:
From what I see your first snippet unlocks mutex based on some condition only, i.e. in pseudocode it is like:
mutex.lock ():
if some_unrelated_thing:
mutex.unlock ()
As I understand your code, this way the first snippet can in principle lock and then never unlock.
Another potential problem is that your code is ultimately exception-unsafe. Are you really able to guarantee that no exceptions happen between lock/unlock operations? Because if any uncaught exception is ever thrown, you get into a deadlock like described. I'd suggest using some sort of RAII here.
EDIT:
Untested RAII way of performing lock/unlock:
struct Lock
{
MUTEX& mutex;
bool locked;
Lock (MUTEX& mutex)
: mutex (mutex),
locked (false)
{ }
~Lock ()
{ release (); }
bool acquire (int timeout = -1)
{
if (!locked && WaitForSingleObject (mutex, timeout) == WAIT_OBJECT_0)
locked = true;
return locked;
}
int release ()
{
if (locked)
locked = ReleaseMutex (mutex);
return !locked;
}
};
Usage could be like this:
{
Lock q (mutex_q);
if (q.acquire (5)) {
if (!QueueVector.empty ()) {
q.release ();
...
}
}
}
Note that this way ~Lock
always releases the mutex, whether you did that explicitly or not, whether the scope block exited normally or due to an uncaught exception.
Upvotes: 2
Reputation: 62459
I'm not sure if this is intended behavior, but in this code:
void Thread::BackgroundCalculator( void *unused ){
while( true ){
if(MUTEX_LOCK(&mutex_q, 5) == 1){
if(!QueueVector.empty()){
//cut
MUTEX_UNLOCK(&mutex_q);
//cut
while(MUTEX_LOCK(&mutex_p,90000) != 1){}
//cut
MUTEX_UNLOCK(&mutex_p);
}
}
SLEEP(25);
}
if the QueueVector.empty
is true you are never unlocking mutex_q
.
Upvotes: 2