Reputation: 61289
I've been using Paul Heckbert's excellent seed fill algorithm (available here and in the book Graphic Gems (1990)).
Convoluted as the algorithm may appear. It's well-conceived and it's fast! Unfortunately, it's only for 4-connected spaces.
I am looking for a well-designed, fast algorithm for 8-connected spaces (leaks along the diagonal). Any ideas?
Recursively visiting or repeatedly throwing every cell onto a stack will not be considered well-designed for the purposes of this question. Algorithms available in pseudocode are most appreciated (Heckbert's is available in both code and pseudocode).
Thanks!
Heckbert's algorithm is copied here for completeness:
/*
* A Seed Fill Algorithm
* by Paul Heckbert
* from "Graphics Gems", Academic Press, 1990
*
* user provides pixelread() and pixelwrite() routines
*/
/*
* fill.c : simple seed fill program
* Calls pixelread() to read pixels, pixelwrite() to write pixels.
*
* Paul Heckbert 13 Sept 1982, 28 Jan 1987
*/
typedef struct { /* window: a discrete 2-D rectangle */
int x0, y0; /* xmin and ymin */
int x1, y1; /* xmax and ymax (inclusive) */
} Window;
typedef int Pixel; /* 1-channel frame buffer assumed */
Pixel pixelread();
typedef struct {short y, xl, xr, dy;} Segment;
/*
* Filled horizontal segment of scanline y for xl<=x<=xr.
* Parent segment was on line y-dy. dy=1 or -1
*/
#define MAX 10000 /* max depth of stack */
#define PUSH(Y, XL, XR, DY) /* push new segment on stack */ \
if (sp<stack+MAX && Y+(DY)>=win->y0 && Y+(DY)<=win->y1) \
{sp->y = Y; sp->xl = XL; sp->xr = XR; sp->dy = DY; sp++;}
#define POP(Y, XL, XR, DY) /* pop segment off stack */ \
{sp--; Y = sp->y+(DY = sp->dy); XL = sp->xl; XR = sp->xr;}
/*
* fill: set the pixel at (x,y) and all of its 4-connected neighbors
* with the same pixel value to the new pixel value nv.
* A 4-connected neighbor is a pixel above, below, left, or right of a pixel.
*/
fill(x, y, win, nv)
int x, y; /* seed point */
Window *win; /* screen window */
Pixel nv; /* new pixel value */
{
int l, x1, x2, dy;
Pixel ov; /* old pixel value */
Segment stack[MAX], *sp = stack; /* stack of filled segments */
ov = pixelread(x, y); /* read pv at seed point */
if (ov==nv || x<win->x0 || x>win->x1 || y<win->y0 || y>win->y1) return;
PUSH(y, x, x, 1); /* needed in some cases */
PUSH(y+1, x, x, -1); /* seed segment (popped 1st) */
while (sp>stack) {
/* pop segment off stack and fill a neighboring scan line */
POP(y, x1, x2, dy);
/*
* segment of scan line y-dy for x1<=x<=x2 was previously filled,
* now explore adjacent pixels in scan line y
*/
for (x=x1; x>=win->x0 && pixelread(x, y)==ov; x--)
pixelwrite(x, y, nv);
if (x>=x1) goto skip;
l = x+1;
if (l<x1) PUSH(y, l, x1-1, -dy); /* leak on left? */
x = x1+1;
do {
for (; x<=win->x1 && pixelread(x, y)==ov; x++)
pixelwrite(x, y, nv);
PUSH(y, l, x-1, dy);
if (x>x2+1) PUSH(y, x2+1, x-1, -dy); /* leak on right? */
skip: for (x++; x<=x2 && pixelread(x, y)!=ov; x++);
l = x;
} while (x<=x2);
}
}
Upvotes: 4
Views: 2904
Reputation: 93410
Check cvFloodFill() from the OpenCV framework. The flags parameter seems to be used to set this value:
void cvFloodFill(CvArr* image,
CvPoint seed_point,
CvScalar new_val,
CvScalar lo_diff=cvScalarAll(0),
CvScalar up_diff=cvScalarAll(0),
CvConnectedComp* comp=NULL,
int flags=4,
CvArr* mask=NULL)
Upvotes: 1
Reputation: 981
https://github.com/DanBloomberg/leptonica/blob/master/src/conncomp.c has 4-connected and 8-connected variants of Heckbert's algorithm.
pixSeedfill8()
is the function you need.
Upvotes: 0