Reputation: 36463
I have an array X of 3D coords of N points (N*3) and want to calculate the eukledian distance between each pair of points.
I can do this by iterating over X and comparing them with the threshold.
coords = array([v.xyz for v in vertices])
for vertice in vertices:
tests = np.sum(array(coords - vertice.xyz) ** 2, 1) < threshold
closest = [v for v, t in zip(vertices, tests) if t]
Is this possible to do in one operation? I recall linear algebra from 10 years ago and can't find a way to do this.
Probably this should be a 3D array (point a, point b, axis) and then summed by axis
dimension.
edit: found the solution myself, but it doesn't work on big datasets.
coords = array([v.xyz for v in vertices])
big = np.repeat(array([coords]), len(coords), 0)
big_same = np.swapaxes(big, 0, 1)
tests = np.sum((big - big_same) ** 2, 0) < thr_square
for v, test_vector in zip(vertices, tests):
v.closest = self.filter(vertices, test_vector)
Upvotes: 3
Views: 334
Reputation: 363547
Use scipy.spatial.distance
. If X
is an n
×3 array of points, you can get an n
×n
distance matrix from
from scipy.spatial import distance
D = distance.squareform(distance.pdist(X))
Then, the closest to point i
is the point with index
np.argsort(D[i])[1]
(The [1]
skips over the value in the diagonal, which will be returned first.)
Upvotes: 2
Reputation: 8538
If xyz is the array with your coordinates, then the following code will compute the distance matrix (works fast till the moment when you have enough memory to store N^2 distances):
xyz = np.random.uniform(size=(1000,3))
distances = (sum([(xyzs[:,i][:,None]-xyzs[:,i][None,:])**2 for i in range(3)]))**.5
Upvotes: 0
Reputation: 6440
I'm not quite sure what you're asking here. If you're computing the Euclidean distance between each pair of points in an N-point space, it would make sense to me to represent the results as a look-up matrix. So for N points, you'd get an NxN symmetric matrix. Element (3, 5) would represent the distance between points 3 and 5, whereas element (2, 2) would be the distance between point 2 and itself (zero). This is how I would do it for random points:
import numpy as np
N = 5
coords = np.array([np.random.rand(3) for _ in range(N)])
dist = np.zeros((N, N))
for i in range(N):
for j in range(i, N):
dist[i, j] = np.linalg.norm(coords[i] - coords[j])
dist[j, i] = dist[i, j]
print dist
Upvotes: 0