ubaabd
ubaabd

Reputation: 435

Does C++ code run faster if there is no structure in program

I know it helps a lot if we structure our programs using classes, structs etc. but does it help in terms of running speed that we avoid these structures and write code plain in terms of basic C++ syntax?

For example, I am trying to write a program that works on vectors. Now it sounds tempting to write a class vector and define its methods like set_at_index(int i) that sets the value of specific row i of this vector. Furthermore I can check whether i<=N where N is the length of the vector in question.

My confusion is that with these routine every set_at_index method that is used a lot will require one 'if' statement. So if I want my code to run faster should I avoid it and go with declaring an array and manually take care that there is no memory leak?

Is there any way I can check for the memory leaks without putting burden on the code speed?

Upvotes: 3

Views: 910

Answers (5)

thb
thb

Reputation: 14454

Some good answers have already been posted, and premature optimization is indeed inadvisable as others have said. However, let me put your question in slightly another light.

I know it helps a lot if we structure our programs using classes, structs etc. but does it help in terms of running speed that we avoid these structures and write code plain in terms of basic C++ syntax?

Theoretically, most properly written C++ code should run just as fast with fully developed classes as without, but

  1. there are exceptions to the rule;
  2. the effort required to write the C++ code theoretically properly may be too great; and
  3. the same features of the C++ compiler that make it hard to write incorrect code can make it all too easy to write grossly inefficient code.

Point-by-point remarks follow.

  1. Consider a complex three-dimensional vector type, of which each instance consists of six doubles (three real parts and three imaginary parts). If there were not so many doubles, your compiler might load them directly into your microprocessor's registers, but with six they are likely to remain on the stack when the complex three-dimensional vector is loaded. Some operations however on a complex three-dimensional vector do not require all six doubles, but only one, two or three of them. If so, then it might be preferable to store the six floating-point components separately. Thus, rather than an array of 1000 vectors, you'd keep six arrays of 1000 doubles each. Of course, one can (and probably should) bind the arrays together in a class of some kind, but -- for efficiency reasons only -- a good design might never explicitly associate individual elements from one array to another.

  2. Sometimes, you know where your data is and what you want to do with it, and C++'s elaborate organizational and access-control facilities only get in your way. In this case, you might skip the high-level C++ and just do what you want in primitive, hackworthy, brutish, machete-wielding C-style code. Indeed, C++ explicitly supports this style of coding by making it possible -- nay, easy -- to wrap the primitive C code safely within a module and thus to hide its horror from the rest of your beautiful C++ program. Of course, if you hand your code a machete, so to speak, then you take a risk, don't you, because your code may hack up data you never wanted it to, and your compiler will stand aside and let it do it; but sometimes the risk is worth the gain, and sometimes the risk is even fun (and character-building) for a programmer's change of pace.

  3. This point is the most subtle of the three. Where a user-defined type consists partly of other user-defined types, multiple layers of constructors will be called and implicitly invoked. This is great, and usually it is what you want, especially if you have a good unit-testing regime at each layer. The rose however has a thorn, as it were. A properly written constructor is careful never to lose anything it needs. So, unless the programmer is most careful, a constructor may quietly make a lot of strictly unnecessary copies of very large objects. Sometimes, the programmer will mentally lose track of all the levels of implicit invocation, which he never would have done if he had had to handle each invocation explicitly. Also, your data in an object of one type may lack access to a member function to which it can easily gain access, so long is it temporarily copies itself to an object of another type (you can avoid the copy with the use of handle types, reference counting and so forth, but this is not free: it's quite a bit of work). Even if the programmer is conscious of the implicit copy, the implicit copy is so much easier to code in the moment that the temptation to do so is sometimes too great -- especially when a deadline looms! Several hidden inefficiencies can arise in these ways. One can, and should, work around such inefficiencies, of course, but it can take a lot of coding effort to do so and, even then, your compiler is so busy helping you to avoid logical errors that it tends to cause you to create inadvertent inefficiencies that you would never purposely have created. The unnecessary, hidden copying of data is a much bigger problem in C++ than it ever was in C.

All in all, I would say that the C++ trade-off is worth it 80 percent of the time. C++'s organizational and access-control facilities merit the effort it takes to apply them properly. If your question regards the 20 percent, well, there is more than one valid approach to programming, in my view. Sometimes it really does help "that we avoid these structures and write code plain in terms of basic C++ syntax," as you have said.

Usually, no. Sometimes, yes. I think that the earlier answers are right, though, that the particular example you have posed is probably better treated in boring, neat, orderly C++, without tricks.

Upvotes: 1

Stephane Rolland
Stephane Rolland

Reputation: 39906

"Premature optimization is root of all evils" - Donald Knuth. (this is true 97% of the time).

Unless you profile your application and see that your class encapsulation is a bottleneck that does slow your application in a significant amount, don't hesitate to have high level structures. It will brings you plenty of benefits like readability, maintainance, and understanding what you do. That's what brings OOP: Big scale programs.

Upvotes: 1

Seth Carnegie
Seth Carnegie

Reputation: 75130

Yes, bounds checking will take slightly more time. But it will take so little extra time that it will only matter if the code is being run 28894389375 times and then it might add up to a millisecond. Note that std::vector only performs bounds checking if you use the at member function, not if you use operator[]. Also, if you are doing anything like writing to a file or printing text to the console, doing that one time will likely take more time than ten million bounds-checked array accesses, because I/O is relatively very very slow.

Typically, without bounds checking code using classes will run at the same speed as code using plain arrays. The problem with manually managing memory like you suggest is that it's easy to forget to clean it up, or to clean it up only through one path of execution through the program, or to fail to clean it up in the event of an exception. It's really hardly ever worth it. Also, it'll be just as fast to use a vector class without bounds checking as it will be to use a dynamic array without bounds checking. You pay for it either way.

I also suggest using std::vector instead of writing your own vector class since they do pretty much every optimisation you could do yourself, and they usually have the advantage of being able to write the code for their specific compiler and perhaps be able to take advantage of things that only that compiler does because they know more of its implementation. The STL classes are also rigorously tested and written by experts (usually).

You should write your code first, then measure with a profiler to see the bottlenecks in your code if it is not fast enough already, then optimise the bottlenecks. I will bet that bounds checking on arrays is probably not going to be one of those bottlenecks.

Checking for memory leaks can be done with a tool like valgrind. You don't do it in the code itself.

Upvotes: 7

Jack
Jack

Reputation: 133587

Two things:

  • DO NOT do any kind of premature optimization, CPUs are fast nowadays, compilers are smart and able to figure out optimizations that you wouldn't think of in months of looking at your code.
  • you can easily check things like memory leaks by profiling your code and/or using conditional compilation. Leaks shouldn't occur on release versions so you should just skip that checks.

Upvotes: 0

Tim Rupe
Tim Rupe

Reputation: 4321

Don't try to over optimize before you even start writing. Go ahead and write code that is easily maintainable, readable, and as bug free as possible. Once you have things working, you can start profiling to see the real bottlenecks.

Upvotes: 2

Related Questions