Reputation: 237
I have a list of triads (vertex1, vertex2, weight) representing the edges of a weighted directed graph. Since prototype implementation is going on in Matlab, these are imported as a Nx3 matrix, where N is the number of edges. So the naive implementation of this is
id1 = L(:,1);
id2 = L(:,2);
weight = L(:,3);
m = max(max(id1, id2)) % to find the necessary size
V = zeros(m,m)
for i=1:m
V(id1(i),id2(i)) = weight(i)
end
The trouble with tribbles is that "id1" and "id2" are nonconsecutive; they're codes. This gives me three problems. (1) Huge matrices with way too many "phantom", spurious vertices, which distorts the results of algorithms to be used with that matrix and (2) I need to recover the codes in the results of said algorithms (suffice to say this would be trivial if id codes where consecutive 1:m).
Answers in Matlab are preferrable, but I think I can hack back from answers in other languages (as long as they're not pre-packaged solutions of the kind "R has a library that does this").
I'm new to StackOverflow, and I hope to be contributing meaningfully to the community soon. For the time being, thanks in advance!
Edit: This would be a solution, if we didn't have vertices at the origin of multiple vertices. (This implies a 1:1 match between the list of edge origins and the list of identities)
for i=1:n
for j=1:n
if id1(i) >0 & i2(j) > 0
V(i,j) = weight(i);
end
end
end
Upvotes: 3
Views: 6320
Reputation: 700
Here is another solution:
First put together all your vertex ids since there might a sink vertex in your graph:
v_id_from = edge_list(:,1);
v_id_to = edge_list(:,2);
v_id_all = [v_id_from; v_id_to];
Then find the unique vertex ids:
v_id_unique = unique(v_id_all);
Now you can use the ismember function to get the mapping between your vertex ids and their consecutive index mappings:
[~,from] = ismember(v_id_from, v_id_unique);
[~,to] = ismember(v_id_to, v_id_unique);
Now you can use sub2ind to populate your adjacency matrix:
adjacency_matrix = zeros(length(from), length(to));
linear_ind = sub2ind(size(adjacency_matrix), from, to);
adjacency_matrix(linear_ind) = edge_list(:,3);
You can always go back from the mapped consecutive id to the original vertex id:
original_vertex_id = v_id_unique(mapped_consecutive_id);
Hope this helps.
Upvotes: 0
Reputation: 19880
You can use GRP2IDX function to convert your id codes to consecutive numbers, and ids can be either numerical or not, does not matter. Just keep the mapping information.
[idx1, gname1, gmap1] = grp2idx(id1);
[idx2, gname2, gmap2] = grp2idx(id2);
You can recover the original ids with gmap1(idx1)
.
If your id1
and id2
are from the same set you can apply grp2idx
to their union:
[idx, gname,gmap] = grp2idx([id1; id2]);
idx1 = idx(1:numel(id1));
idx2 = idx(numel(id1)+1:end);
For the reordering see a recent question - how to assign a set of coordinates in Matlab?
You can use ACCUMARRAY or SUB2IND to solve this problem.
V = accumarray([idx1 idx2], weight);
or
V = zeros(max(idx1),max(idx2)); %# or V = zeros(max(idx));
V(sub2ind(size(V),idx1,idx2)) = weight;
Confirm if you have non-unique combinations of id1
and id2
. You will have to take care of that.
Upvotes: 1
Reputation: 12486
If your problem is that the node ID numbers are nonconsecutive, why not re-map them onto consecutive integers? All you need to do is create a dictionary of all unique node ID's and their correspondence to new IDs.
This is really no different to the case where you're asked to work with named nodes (Australia
, Britain
, Canada
, Denmark
...) - you would map these onto consecutive integers first.
Upvotes: 1
Reputation: 633
Your first solution is close to what you want. However it is probably best to iterate over your edge list instead of the adjacency matrix.
edge_indexes = edge_list(:, 1:2);
n_edges = max(edge_indexes(:));
adj_matrix = zeros(n_edges);
for local_edge = edge_list' %transpose in order to iterate by edge
adj_matrix(local_edge(1), local_edge(2)) = local_edge(3);
end
Upvotes: 0