Mr Moose
Mr Moose

Reputation: 6344

Clarification on HMAC authentication with WCF

I have been following a couple of articles regarding RESTful web services with WCF and more specifically, how to go about authentication in these. The main article I have been referencing is Aaron Skonnard's RESTful Web Services with WCF 3.5. Another one that specifically deals with HMAC authentication is Itai Goldstiens article which is based on Skonnards article.

I am confused about the "User Key" that is referenced to in both articles. I have a client application that is going to require a user to have both a user name and password.

In my example, the text parameter would be a combination of request uri, a shared secret and timestamp (which will be available as a request header and used to prevent replay attacks).

Is this form of authentication decent? I've come across another thread here that suggests that the method defined in the articles above is "..a (sic) ugly hack." The author doesn't suggest why, but it is discouraging given that I've spent a few hours reading about this and getting it working. However, it's worth noting that the accepted answer on this question talks about a custom HMAC authorisation scheme so it is possible the ugly hack reference is simply the implementation of it rather than the use of HMAC algorithms themselves.

The diagram below if from the wikipedia article on Message Authentication Code. I feel like this should be a secure way to go, but I just want to make sure I understand it's use correctly and also make sure this isn't simply some dated mechanism that has been surpassed by something much better.

Illustrates how MAC authentication works between sender and reciever

Upvotes: 2

Views: 3316

Answers (1)

Andras Zoltan
Andras Zoltan

Reputation: 42363

The key can be the user's password, but you absolutely should not do this.

  • First - the key has an optimal length equal to the size of the output hash, and a user's password will rarely be equal to that.
  • Second, there will never be enough randomness (entropy to use the technical term) in those bytes to be an adequate key.
  • Third, although you're preventing replay attacks, you're allowing anyone potentially to sign any kind of request, assuming they can also get hold of the shared secret (is that broadcast by the server at some point or is it derived only on the client and server? If broadcast, a man-in-the-middle attack can easily grab and store that - height of paranoia, yes, but I think you should think about it) unless the user changes their password.
  • Fourth - stop using HMACMD5 - use HMAC-SHA-256 as a minimum.

This key should at the very least be a series of bytes that are generated from the user's password - typically using something like PBKDF2 - however you should also include something transitory that is session-based and which, ideally, can't be known by an attacker.

That said, a lot of people might tell you that I'm being far too paranoid.

Personally I know I'm not an expert in authentication - it's a very delicate balancing act - so I rely on peer-reviewed and proven technologies. SSL (in this case authentication via client certificates), for example, might have it's weaknesses, but most people use it and if one of my systems gets exploited because of an SSL weakness, it's not going to be my fault. However if an exploit occurs because of some weakness that I wasn't clever enough to identify? I'd kick myself out of the front door.

Indidentally, for my rest services I now use SCRAM for authentication, using SHA512 and 512 bits of random salt for the stretching operation (many people will say that's excessive, but I won't have to change it for a while!), and then use a secure token (signed with an HMAC and encrypted with AES) derived from the authentication and other server-only-known information to persist an authenticated session. The token is stateless in the same way that Asp.Net forms authentication cookies are.

The password exchange works very well indeed, is secure even without SSL (in protecting the password) and has the added advantage of authenticating both client and server. The session persistence can be tuned based on the site and client - the token carries its own expiry and absolute expiry values within it, and these can be tuned easily. By encrypting client ID information into that token as well, it's possible to prevent duplication on to another machine by simply comparing the decrypted values from the client-supplied values. Only thing about that is watching out for IP address information, yes it can be spoofed but, primarily, you have to consider legitimate users on roaming networks.

Upvotes: 4

Related Questions