Zhao Li
Zhao Li

Reputation: 5716

Cloud Architecture

I'm researching cloud services to host an e-commerce site. And I'm trying to understand some basics on how they are able to scale things.

From what I can gather from AWS, Rackspace, etc documentation:

Setup 1: You can get an instance of a webserver (AWS - EC2, Rackspace - Cloud Server) up. Then you can grow that instance to have more resources or make replicas of that instance to handle more traffic. And it seems like you can install a database local to these instances.

Setup 2: You can have instance(s) of a webserver (AWS - EC2, Rackspace - Cloud Server) up. You can also have instance(s) of a database (AWS - RDS, Rackspace - Cloud Database) up. So the webserver instances can communicate with the database instances through a single access point.

When I use the term instances, I'm just thinking of replicas that can be access through a single access point and data is synchronized across each replica in the background. This could be the wrong mental image, but it's the best I got right now.

I can understand how setup 2 can be scalable. Webserver instances don't change at all since it's just the source code. So all the http requests are distributed to the different webserver instances and is load balanced. And the data queries have a single access point and are then distributed to the different database instances and is load balanced and all the data writes are sync'd between all database instances that is transparent to the application/webserver instance(s).

But for setup 1, where there is a database setup locally within each webserver instance, how is the data able to be synchronized across the other databases local to the other web server instances? Since the instances of each webserver can't talk to each other, how can you spin up multiple instances to scale the app? Is this setup mainly for sites with static content where the data inside the database is not getting changed? So with an e-commerce site where orders are written to the database, this architecture will just not be feasible? Or is there some way to get each webserver instance to update their local database to some master copy?

Sorry for such a simple question. I'm guessing the documentation doesn't say it plainly because it's so simple or I just wasn't able to find the correct document/page.

Thank you for your time!

Update: Moved question to here:

https://webmasters.stackexchange.com/questions/32273/cloud-architecture

Upvotes: 1

Views: 1170

Answers (2)

Dina Kaiser
Dina Kaiser

Reputation: 476

Relating to setup #1, you're right, if you duplicate the entire database on each machine with load balancing, you need to worry about replicating the data between the nodes, this will be complex and will take a toll on performance, or you'll need to sacrifice consistency, or synchronize everything to a single big database and then you lose the effect of clustering. Also keep in mind that when throughput increases, adding an additional server is a manual operation that can take hours, so you can't respond to throughput on-demand.

Relating to setup #2, here scaling the application is easy and the cloud providers do that for you automatically, but the database will become the bottleneck, as you are aware. If the cloud provider scales up your application and all those application instances talk to the same database, you'll get more throughput for the application, but the database will quickly run out of capacity. It has been suggested to solve this by setting up a MySQL cluster on the cloud, which is a valid option but keep in mind that if throughput suddenly increases you will need to reconfigure the MySQL cluster which is complex, you won't have auto scaling for your data.

Another way to do this is a cloud database as a service, there are several options on both the Amazon and RackSpace clouds. You mentioned RDS but it has the same issue because in the end it's limited to one database instance with no auto-scaling. Another MySQL database service is Xeround, which spreads the load over several database nodes, and there is a load balancer that manages the connection between those nodes and synchronizes the data between the partitions automatically. There is a single access point and a round-robin DNS that sends the requests to up to thousands of database nodes. So this might answer your need for a single access point and scalability of the database, without needing to setup a cluster or change it every time there is a scale operation.

Upvotes: 1

prototype
prototype

Reputation: 7975

We have one server setup to be the application server, and our database installed across a cluster of separate machines on AWS in the same availability zone (initially three but scalable). The way we set it up is with a "k-safe" replication. This is scalable as the data is distributed across the machines, and duplicated such that one machine could disappear entirely and the site continues to function. THis also allows queries to be distributed.
(Another configuration option was to duplicate all the data on each of the database machines)

Upvotes: 1

Related Questions