Reputation: 695
Say I have 4 or 5 data sources that I access through API calls. The data aggregation and mining is all scripted in a python file. Lets say the output is all structured data. I know there are plenty of considerations, but from a high level, what would some possible solutions look like if I ultimately wanted to run analysis in BI software?
Can I host the python script in Lambda and set a daily trigger to run the python file. And then have the output stored in RDS/Aurora? Or since the applications I'm running API calls to aren't in AWS, would I need the data to be in an AWS instance before running a Lambda function?
Or host the python script in an EC2 instance, use lambda to trigger a daily refresh that just stores the data in EC2-ESB or Redshift?
Just starting to learn AWS cloud architecture so my knowledge is fairly limited. Just seems like there can be multiple solutions to any problem so not sure if the 2 ideas above are viable.
Upvotes: 0
Views: 137
Reputation: 3216
You've mentioned two approaches which are working. Ultimately it very depends on your use case, budget etc.. and you are right, usually in AWS you will have different solutions that can solve the same problem. For example, another possible solution could be to Dockerize your Python script and run it on containers services (ECS/EKS). But considering you just started with AWS I will focus on the approaches you mentioned as it's probably the most 2 common ones.
In short, based on your description, I would not suggest to go with EC2 because it adds complexity to your use case and moreover extra costs. If you can imagine the final setup, you will need to configure and manage the instance itself, its class type, AMI, your script deployment, access to internet, subnets, etc. Also a minor thing to clarify: you would probably set a cron expression on it to trigger your script (not a lambda reaching the EC2 !). As you can see, quite a big setup for poor benefits (except maybe gaining some experience with AWS ;)) and the instance would be idle most of the time which is far from optimum.
If you just have to run a daily Python script and need to store the output somewhere I would suggest to use lambda for the processing, you can simply have a scheduled event (prefered way is now Amazon EventBridge instead) that triggers your lambda function once a day. Then depending on your output and how you need to process it, you can use RDS obviously from lambda using the Python SDK but you can also use S3 as blob storage if you don't need to run specific queries - for example if you can store your output in json format.
Note that one limitation to lambda is that it can only run for 15 minutes straight per execution. The good thing is that by default lambda has internet access so you don't need to care about any gateway setup and can reach your external endpoints.
Also from a cost perspective running one lambda/day combined with S3 should be free or almost free. The pricing in lambda is very cheap. Running 24/7 an EC2 instance or RDS (which is also an instance) will cost you some money.
Upvotes: 2
Reputation: 11092
Lambda with storage in S3 is the way to go. EC2 / EBS costs add up over time and EC2 will limit the parallelism you can achieve.
Look into Step Functions as a way to organize and orchestrate your Lambdas. I have python code that copies 500K+ files to S3 and takes a week to run. If I copy the files in parallel (500-ish at a time) this process takes about 10 hours. The parallelism is limited by the sourcing system as I can overload it by going wider. The main Lambda launches the file copy Lambdas at a controlled rate but also terminates after a few minutes of run time but returns the last file updated to the controlling Step Function. The Step Function restarts the main Lambda where the last one left off.
Since you have multiple sources you can have multiple top level Lambdas running in parallel all from the same Step Function and each launching a controlled number of worker Lambdas. You won't overwhelm S3 but you will want to make sure you don't overload your sources.
The best part of this is that it costs pennies (at the scale I'm using it).
Once the data is in S3 I'm copying it up to Redshift and transforming it. These processes are also part of the Step Function through additional Lambda Functions.
Upvotes: 1