Reputation: 6133
while(i < length)
{
pow = 1;
for(int j = 0; j < 8; j++, pow *=2)
{
ch += (str[j] - 48) * pow;
}
str = str.substr(8);
i+=8;
cout << ch;
ch = 0;
}
This seems to be slowing my program down a lot. Is it because of the string functions I'm using in there, or is this approach wrong in general. I know there's the way where you implement long division, but I wanted to see if that was actually more efficient than this method. I can't think of another way that doesn't use the same general algorithm, so maybe it's just my implementation that is the problem.
Upvotes: 1
Views: 242
Reputation: 477140
Minimize the number of operations and don't compute things more than once. Just multiply and move up:
unsigned int result = 0;
for (char * p = str; *p != 0; ++p)
{
result *= 2;
result += (*p - '0'); // this is either 0 or 1
}
The scheme is readily generalized to any base < 10.
Upvotes: 0
Reputation: 881633
Perhaps you want might to look into using the standard library functions. They're probably at least as optimised as anything you run through the compiler:
#include <iostream>
#include <iomanip>
#include <cstdlib>
int main (void) {
const char *str = "10100101";
// Use str.c_str() if it's a real C++ string.
long int li = std::strtol (str, 0, 2);
std::cout
<< "binary string = " << str
<< ", decimal = " << li
<< ", hex = " << std::setbase (16) << li
<< '\n';
return 0;
}
The output is:
binary string = 10100101, decimal = 165, hex = a5
Upvotes: 5
Reputation: 92271
You are doing some things unnecessarily, like creating a new substring for each each loop. You could just use str[i + j]
instead.
It is also not necessary to multiply 0 or 1 with the power. Just use an if-statement.
while(i < length)
{
pow = 1;
for(int j = 0; j < 8; j++, pow *=2)
{
if (str[i + j] == '1')
ch += pow;
}
i+=8;
cout << ch;
ch = 0;
}
This will at least run a bit faster.
Upvotes: 1
Reputation: 409196
How about something like:
int binstring_to_int(const std::string &str)
{
// 16 bits are 16 characters, but -1 since bits are numbered 0 to 15
std::string::size_type bitnum = str.length() - 1;
int value = 0;
for (auto ch : str)
{
value |= (ch == '1') << bitnum--;
}
return value;
}
It's the simplest I can think of. Note that this uses the new C++11 for-each loop construct, if your compiler can't handle it you can use
for (std::string::const_iterator i = str.begin(); i != str.end(); i++)
{
char ch = *i;
// ...
}
Upvotes: 0
Reputation: 67231
short answer could be:
long int x = strtol(your_binary_c++_string.c_str(),(char **)NULL,2)
Probably you can use int or long int like below:
Just traverse the binary number step by step, starting from 0 to n-1, where n is the most significant bit(MSB) , multiply them with 2 with raising powers and add the sum together. E.g to convert 1000(which is binary equivalent of 8), just do the following
1 0 0 0 ==> going from right to left
0 x 2^0 = 0 0 x 2^1 = 0; 0 x 2^2 = 0; 1 x 2^3 = 8; now add them together i.e 0+0+0+8 = 8; this the decimal equivalent of 1000. Please read the program below to have a better understanding how the concept work. Note : The program works only for 16-bit binary numbers(non-floating) or less. Leave a comment if anything is not clear. You are bound to receive a reply.
// Program to convert binary to its decimal equivalent
#include <iostream>
#include <math.h>
int main()
{
int x;
int i=0,sum = 0;
// prompts the user to input a 16-bit binary number
std::cout<<" Enter the binary number (16-bit) : ";
std::cin>>x;
while ( i != 16 ) // runs 16 times
{
sum += (x%10) * pow(2,i);
x = x/10;
i++;
}
std::cout<<"\n The decimal equivalent is : "<<sum;
return 0;
}
Upvotes: 0