Reputation: 3554
the type argument to xyplot()
can take "s" for "steps." From help(plot)
:
The two step types differ in their x-y preference: Going from (x1,y1) to (x2,y2) with x1 < x2, 'type = "s"' moves first horizontal, then vertical, whereas 'type = "S"' moves the other way around.
i.e. if you use type="s"
, the horizontal part of the step has its left end attached to the data point, while type="S"
has its right end attached to the data point.
library(lattice)
set.seed(12345)
num.points <- 10
my.df <- data.frame(x=sort(sample(1:100, num.points)),
y=sample(1:40, num.points, replace=TRUE))
xyplot(y~x, data=my.df, type=c("p","s"), col="blue", main='type="s"')
xyplot(y~x, data=my.df, type=c("p","S"), col="red", main='type="S"')
How could one achieve a "step" plot, where the vertical motion happens between data points points, i.e. at x1 + (x2-x1)/2
, so that the horizontal part of the step is centered on the data point?
Edited to include some example code. better late than never I suppose.
Upvotes: 2
Views: 971
Reputation: 121588
I am using excellent @nico answer to give its lattice version. Even I am ok with @Dwin because the question don't supply a reproducible example, but customizing lattice panel is sometimes challenging.
The idea is to use panel.segments
which is the equivalent of segments
of base graphics.
library(lattice)
xyplot(y~x,
panel =function(...){
ll <- list(...)
x <- ll$x
y <- ll$y
x.start <- x - (c(0, diff(x)/2))
x.end <- x + (c(diff(x)/2, 0))
panel.segments(x.start, y, x.end, y, col="orange", lwd=2)
panel.segments(x.end[-length(x.end)], y[1:(length(y)-1)],
x.end[-length(x.end)], y[-1], col="orange", lwd=2)
## this is optional just to compare with type s
panel.xyplot(...,type='s')
## and type S
panel.xyplot(...,type='S')
})
Upvotes: 2
Reputation: 51670
This is a base graphics solution, as I am not too much of an expert in lattice
.
Essentially you can use segments
to draw first the horizontal, then the vertical steps, passing the shifted coordinates as a vector.
Here is an example:
set.seed(12345)
# Generate some data
num.points <- 10
x <- sort(sample(1:100, num.points))
y <- sample(1:40, num.points, replace=T)
# Plot the data with style = "s" and "S"
par(mfrow=c(1,3))
plot(x, y, "s", col="red", lwd=2, las=1,
main="Style: 's'", xlim=c(0, 100))
points(x, y, pch=19, col="red", cex=0.8)
plot(x, y, "S", col="blue", lwd=2, las=1,
main="Style: 'S'", xlim=c(0, 100))
points(x, y, pch=19, col="blue", cex=0.8)
# Now plot our points
plot(x, y, pch=19, col="orange", cex=0.8, las=1,
main="Centered steps", xlim=c(0, 100))
# Calculate the starting and ending points of the
# horizontal segments, by shifting the x coordinates
# by half the difference with the next point
# Note we leave the first and last point as starting and
# ending points
x.start <- x - (c(0, diff(x)/2))
x.end <- x + (c(diff(x)/2, 0))
# Now draw the horizontal segments
segments(x.start, y, x.end, y, col="orange", lwd=2)
# and the vertical ones (no need to draw the last one)
segments(x.end[-length(x.end)], y[1:(length(y)-1)],
x.end[-length(x.end)], y[-1], col="orange", lwd=2)
Here is the result:
Upvotes: 2