Reputation: 22488
I am just getting started with pandas in the IPython Notebook and encountering the following problem: When a DataFrame
read from a CSV file is small, the IPython Notebook displays it in a nice table view. When the DataFrame
is large, something like this is ouput:
In [27]:
evaluation = readCSV("evaluation_MO_without_VNS_quality.csv").filter(["solver", "instance", "runtime", "objective"])
In [37]:
evaluation
Out[37]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 333 entries, 0 to 332
Data columns:
solver 333 non-null values
instance 333 non-null values
runtime 333 non-null values
objective 333 non-null values
dtypes: int64(1), object(3)
I would like to see a small portion of the data frame as a table just to make sure it is in the right format. What options do I have?
Upvotes: 54
Views: 185246
Reputation: 4060
df.head(5) # will print out the first 5 rows
df.tail(5) # will print out the 5 last rows
Upvotes: 74
Reputation: 488
I found the following approach to be the most effective for sampling a DataFrame:
print(df[A:B]) ## 'A' and 'B' are the first and last records in range
For example, print(df[10:15])
will print rows 10 through 15 - inclusive - from your data set.
Upvotes: 7
Reputation: 101
To see the first n rows of DataFrame:
df.head(n) # (n=5 by default)
To see the last n rows:
df.tail(n)
Upvotes: 7
Reputation: 91
This line will allow you to see all rows (up to the number that you set as 'max_rows') without any rows being hidden by the dots ('.....') that normally appear between head and tail in the print output.
pd.options.display.max_rows = 500
Upvotes: 9
Reputation: 812
In Python pandas provide head() and tail() to print head and tail data respectively.
import pandas as pd
train = pd.read_csv('file_name')
train.head() # it will print 5 head row data as default value is 5
train.head(n) # it will print n head row data
train.tail() #it will print 5 tail row data as default value is 5
train.tail(n) #it will print n tail row data
Upvotes: 1
Reputation: 353549
In this case, where the DataFrame
is long but not too wide, you can simply slice it:
>>> df = pd.DataFrame({"A": range(1000), "B": range(1000)})
>>> df
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1000 entries, 0 to 999
Data columns:
A 1000 non-null values
B 1000 non-null values
dtypes: int64(2)
>>> df[:5]
A B
0 0 0
1 1 1
2 2 2
3 3 3
4 4 4
If it's both wide and long, I tend to use .ix
:
>>> df = pd.DataFrame({i: range(1000) for i in range(100)})
>>> df.ix[:5, :10]
0 1 2 3 4 5 6 7 8 9 10
0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5 5 5 5
Upvotes: 44
Reputation: 238
In order to view only first few entries you can use, pandas head function which is used as
dataframe.head(any number) // default is 5
dataframe.head(n=value)
or you can also you slicing for this purpose, which can also give the same result,
dataframe[:n]
In order to view the last few entries you can use pandas tail() in a similar way,
dataframe.tail(any number) // default is 5
dataframe.tail(n=value)
Upvotes: 1
Reputation: 101
You can just use nrows
. For instance
pd.read_csv('data.csv',nrows=6)
will show the first 6 rows from data.csv
.
Upvotes: 3
Reputation: 680
Here's a quick way to preview a large table without having it run too wide:
Display function:
# display large dataframes in an html iframe
def ldf_display(df, lines=500):
txt = ("<iframe " +
"srcdoc='" + df.head(lines).to_html() + "' " +
"width=1000 height=500>" +
"</iframe>")
return IPython.display.HTML(txt)
Now just run this in any cell:
ldf_display(large_dataframe)
This will convert the dataframe to html then display it in an iframe. The advantage is that you can control the output size and have easily accessible scroll bars.
Worked for my purposes, maybe it will help someone else.
Upvotes: 7
Reputation: 59564
Update one to generate string instead, and accommodate to Pandas0.13+
def _sw2(df, up_rows=5, down_rows=3, left_cols=4, right_cols=2, return_df=False):
""" return df data display string at four corners
A,B (up_pt)
C,D (down_pt)
parameters : up_rows=10, down_rows=5, left_cols=4, right_cols=3
usage:
df = pd.DataFrame(np.random.randn(20,10), columns=list('ABCDEFGHIJKLMN')[0:10])
df.sw(5,2,3,2)
df1 = df.set_index(['A','B'], drop=True, inplace=False)
df1.sw(5,2,3,2)
"""
#pd.set_printoptions(max_columns = 80, max_rows = 40)
nrow, ncol = df.shape #ncol, nrow = len(df.columns), len(df)
# handle columns
if ncol <= (left_cols + right_cols) :
up_pt = df.ix[0:up_rows, :] # screen width can contain all columns
down_pt = df.ix[-down_rows:, :]
else: # screen width can not contain all columns
pt_a = df.ix[0:up_rows, 0:left_cols]
pt_b = df.ix[0:up_rows, -right_cols:]
pt_c = df[-down_rows:].ix[:,0:left_cols]
pt_d = df[-down_rows:].ix[:,-right_cols:]
up_pt = pt_a.join(pt_b, how='inner')
down_pt = pt_c.join(pt_d, how='inner')
up_pt.insert(left_cols, '..', '..')
down_pt.insert(left_cols, '..', '..')
overlap_qty = len(up_pt) + len(down_pt) - len(df)
down_pt = down_pt.drop(down_pt.index[range(overlap_qty)]) # remove overlap rows
dt_str_list = down_pt.to_string().split('\n') # transfer down_pt to string list
# Display up part data
ds = up_pt.__str__()
#get rid of ending part of Pandas0.13+ display string by finding the last 3 '\n', ugly though
Display_str = ds[0:ds[0:ds[0:ds.rfind('\n')].rfind('\n')].rfind('\n')] #refer to http://stackoverflow.com/questions/4664850/find-all-occurrences-of-a-substring-in-python
start_row = (1 if df.index.names[0] is None else 2) # start from 1 if without index
# Display omit line if screen height is not enought to display all rows
if overlap_qty < 0:
Display_str += "\n"
Display_str += "." * len(dt_str_list[start_row])
Display_str += "\n"
# Display down part data row by row
for line in dt_str_list[start_row:]:
Display_str += "\n"
Display_str += line
# Display foot note
Display_str += "\n\n"
Display_str += "Index : %s\n"%str(df.index.names)
col_name_list = list(df.columns.values)
if ncol < 10:
col_name_str = ", ".join(col_name_list)
else:
col_name_str = ", ".join(col_name_list[0:7]) + ' ... ' + ", ".join(col_name_list[-2:])
Display_str = Display_str + "Column: " + col_name_str + "\n"
Display_str = Display_str + "row: %d col: %d"%(nrow, ncol) + " "
dty_dict={} #simulate defaultdict
for k,g in itertools.groupby(list(df.dtypes.values)): #http://stackoverflow.com/questions/13565248/grouping-the-same-recurring-items-that-occur-in-a-row-from-list/13565414#13565414
try:
dty_dict[k] = dty_dict[k] + len(list(g))
except:
dty_dict[k] = len(list(g))
for key in dty_dict:
Display_str += "{0}: {1} ".format(key, dty_dict[key])
Display_str += "\n\n"
return (df if return_df else Display_str)
Upvotes: 1
Reputation: 59564
I write a method to show the four corners of the data and monkey-patch to dataframe to do so:
def _sw(df, up_rows=10, down_rows=5, left_cols=4, right_cols=3, return_df=False):
''' display df data at four corners
A,B (up_pt)
C,D (down_pt)
parameters : up_rows=10, down_rows=5, left_cols=4, right_cols=3
usage:
df = pd.DataFrame(np.random.randn(20,10), columns=list('ABCDEFGHIJKLMN')[0:10])
df.sw(5,2,3,2)
df1 = df.set_index(['A','B'], drop=True, inplace=False)
df1.sw(5,2,3,2)
'''
#pd.set_printoptions(max_columns = 80, max_rows = 40)
ncol, nrow = len(df.columns), len(df)
# handle columns
if ncol <= (left_cols + right_cols) :
up_pt = df.ix[0:up_rows, :] # screen width can contain all columns
down_pt = df.ix[-down_rows:, :]
else: # screen width can not contain all columns
pt_a = df.ix[0:up_rows, 0:left_cols]
pt_b = df.ix[0:up_rows, -right_cols:]
pt_c = df[-down_rows:].ix[:,0:left_cols]
pt_d = df[-down_rows:].ix[:,-right_cols:]
up_pt = pt_a.join(pt_b, how='inner')
down_pt = pt_c.join(pt_d, how='inner')
up_pt.insert(left_cols, '..', '..')
down_pt.insert(left_cols, '..', '..')
overlap_qty = len(up_pt) + len(down_pt) - len(df)
down_pt = down_pt.drop(down_pt.index[range(overlap_qty)]) # remove overlap rows
dt_str_list = down_pt.to_string().split('\n') # transfer down_pt to string list
# Display up part data
print up_pt
start_row = (1 if df.index.names[0] is None else 2) # start from 1 if without index
# Display omit line if screen height is not enought to display all rows
if overlap_qty < 0:
print "." * len(dt_str_list[start_row])
# Display down part data row by row
for line in dt_str_list[start_row:]:
print line
# Display foot note
print "\n"
print "Index :",df.index.names
print "Column:",",".join(list(df.columns.values))
print "row: %d col: %d"%(len(df), len(df.columns))
print "\n"
return (df if return_df else None)
DataFrame.sw = _sw #add a method to DataFrame class
Here is the sample:
>>> df = pd.DataFrame(np.random.randn(20,10), columns=list('ABCDEFGHIJKLMN')[0:10])
>>> df.sw()
A B C D .. H I J
0 -0.8166 0.0102 0.0215 -0.0307 .. -0.0820 1.2727 0.6395
1 1.0659 -1.0102 -1.3960 0.4700 .. 1.0999 1.1222 -1.2476
2 0.4347 1.5423 0.5710 -0.5439 .. 0.2491 -0.0725 2.0645
3 -1.5952 -1.4959 2.2697 -1.1004 .. -1.9614 0.6488 -0.6190
4 -1.4426 -0.8622 0.0942 -0.1977 .. -0.7802 -1.1774 1.9682
5 1.2526 -0.2694 0.4841 -0.7568 .. 0.2481 0.3608 -0.7342
6 0.2108 2.5181 1.3631 0.4375 .. -0.1266 1.0572 0.3654
7 -1.0617 -0.4743 -1.7399 -1.4123 .. -1.0398 -1.4703 -0.9466
8 -0.5682 -1.3323 -0.6992 1.7737 .. 0.6152 0.9269 2.1854
9 0.2361 0.4873 -1.1278 -0.2251 .. 1.4232 2.1212 2.9180
10 2.0034 0.5454 -2.6337 0.1556 .. 0.0016 -1.6128 -0.8093
..............................................................
15 1.4091 0.3540 -1.3498 -1.0490 .. 0.9328 0.3668 1.3948
16 0.4528 -0.3183 0.4308 -0.1818 .. 0.1295 1.2268 0.1365
17 -0.7093 1.3991 0.9501 2.1227 .. -1.5296 1.1908 0.0318
18 1.7101 0.5962 0.8948 1.5606 .. -0.6862 0.9558 -0.5514
19 1.0329 -1.2308 -0.6896 -0.5112 .. 0.2719 1.1478 -0.1459
Index : [None]
Column: A,B,C,D,E,F,G,H,I,J
row: 20 col: 10
>>> df.sw(4,2,3,4)
A B C .. G H I J
0 -0.8166 0.0102 0.0215 .. 0.3671 -0.0820 1.2727 0.6395
1 1.0659 -1.0102 -1.3960 .. 1.0984 1.0999 1.1222 -1.2476
2 0.4347 1.5423 0.5710 .. 1.6675 0.2491 -0.0725 2.0645
3 -1.5952 -1.4959 2.2697 .. 0.4856 -1.9614 0.6488 -0.6190
4 -1.4426 -0.8622 0.0942 .. -0.0947 -0.7802 -1.1774 1.9682
..............................................................
18 1.7101 0.5962 0.8948 .. -0.8592 -0.6862 0.9558 -0.5514
19 1.0329 -1.2308 -0.6896 .. -0.3954 0.2719 1.1478 -0.1459
Index : [None]
Column: A,B,C,D,E,F,G,H,I,J
row: 20 col: 10
Upvotes: 16