Reputation: 553
In Pandas 0.18.1, say I have a dataframe like so:
df = pd.DataFrame(np.random.randn(100,200))
df.head()
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
What if I wanted to view this vertically like so:
0 1 2 3 4 5
6 7 8 9 10 11
the docs point to:
pd.set_option('expand_frame_repr', True)
df
0 1 2 3 4 5 6 \
0 -1.039575 0.271860 -0.424972 0.567020 0.276232 -1.087401 -0.673690
1 0.404705 0.577046 -1.715002 -1.039268 -0.370647 -1.157892 -1.344312
2 1.643563 -1.469388 0.357021 -0.674600 -1.776904 -0.968914 -1.294524
3 -0.013960 -0.362543 -0.006154 -0.923061 0.895717 0.805244 -1.206412
4 -1.170299 -0.226169 0.410835 0.813850 0.132003 -0.827317 -0.076467
7 8 9
0 0.113648 -1.478427 0.524988
1 0.844885 1.075770 -0.109050
2 0.413738 0.276662 -0.472035
3 2.565646 1.431256 1.340309
4 -1.187678 1.130127 -1.436737
Yet I can't seem to get that same result; what am I missing?
Previous questions seem to revolve around viewing all rows within the slider (pd.set_option('display.max_columns', None)
sort of thing)
Upvotes: 4
Views: 8261
Reputation: 1224
Try this:
import pandas as pd
pd.set_option('expand_frame_repr', True)
pd.set_option("display.max_rows", 999)
pd.set_option('max_colwidth',100)
print(df)
Upvotes: 5
Reputation: 5263
If you want to see just a few records, try this.
df.head(3).transpose()
Upvotes: 13