BigHandsome
BigHandsome

Reputation: 5403

Return index values of a sorted row using pandas?

I just recently discovered the power of pandas. (Thanks Wes McKinney!) I have a csv that contains the following information:

RUN_START_DATE,PUSHUP_START_DATE,SITUP_START_DATE,PULLUP_START_DATE
2013-01-24,2013-01-02,2013-01-30,2013-02-03
2013-01-30,2013-01-21,2013-01-13,2013-01-06
2013-01-29,2013-01-28,2013-01-01,2013-01-29
2013-02-16,2013-02-12,2013-01-04,2013-02-11
2013-01-06,2013-02-07,2013-02-25,2013-02-12
2013-01-26,2013-01-28,2013-02-12,2013-01-10
2013-01-26,2013-02-10,2013-01-12,2013-01-30
2013-01-03,2013-01-24,2013-01-19,2013-01-02
2013-01-22,2013-01-13,2013-02-03,2013-02-05
2013-02-06,2013-01-16,2013-02-07,2013-01-11

Normally, I do not use pandas for this process. I use the csv library to generate a lists. Convert them using the datetime library. I then loop through each line and run something like the following to get the sorted index of each row:

'"' + ','.join(map(str, sorted(range(len(dates)), key=lambda k: dates[k]))) + '"'

It then returns something like this for each line:

Out[40]: '"1,0,2,3"'

I then I add it at the end of each line as a new field in my csv.

I can read the csv into pandas and convert the items to the date dtype. I am just unsure how to go about getting the sorted index values using pandas and then flattening them into a string and putting them into a column? Any help most appreciated!

Upvotes: 2

Views: 5428

Answers (1)

HYRY
HYRY

Reputation: 97331

You can use numpy.argsort() to get the sort index:

from StringIO import StringIO
import numpy as np
import pandas as pd

txt = """RUN_START_DATE,PUSHUP_START_DATE,SITUP_START_DATE,PULLUP_START_DATE
2013-01-24,2013-01-02,2013-01-30,2013-02-03
2013-01-30,2013-01-21,2013-01-13,2013-01-06
2013-01-29,2013-01-28,2013-01-01,2013-01-29
2013-02-16,2013-02-12,2013-01-04,2013-02-11
2013-01-06,2013-02-07,2013-02-25,2013-02-12
2013-01-26,2013-01-28,2013-02-12,2013-01-10
2013-01-26,2013-02-10,2013-01-12,2013-01-30
2013-01-03,2013-01-24,2013-01-19,2013-01-02
2013-01-22,2013-01-13,2013-02-03,2013-02-05
2013-02-06,2013-01-16,2013-02-07,2013-01-11"""
df = pd.read_csv(StringIO(txt))
idx = np.argsort(df, axis=1)
buf = StringIO()
idx.to_csv(buf, index=False, header=False)
print buf.getvalue()

the output:

1,0,2,3
3,2,1,0
2,1,0,3
2,3,1,0
0,1,3,2
3,0,1,2
2,0,3,1
3,0,2,1
1,0,2,3
3,1,0,2

Upvotes: 8

Related Questions