Reputation: 43
I have a 1-D function that takes so much time to compute over a big 2-D array of 'x' values, so it is much easy to create an interpolate function using SciPy facility and then compute y using it, which will be much faster. However, I cannot use the interpolation function on arrays that have more than 1-D.
Example:
# First, I create the interpolation function in the domain I want to work
x = np.arange(1, 100, 0.1)
f = exp(x) # a complicated function
f_int = sp.interpolate.InterpolatedUnivariateSpline(x, f, k=2)
# Now, in the code I do that
x = [[13, ..., 1], [99, ..., 45], [33, ..., 98] ..., [15, ..., 65]]
y = f_int(x)
# Which I want that it returns y = [[f_int(13), ..., f_int(1)], ..., [f_int(15), ..., f_int(65)]]
But returns:
ValueError: object too deep for desired array
I know I could loop over all x members, but I don't know if it is a better option...
Thanks!
EDIT:
A function like that also would do the job:
def vector_op(function, values):
orig_shape = values.shape
values = np.reshape(values, values.size)
return np.reshape(function(values), orig_shape)
I've tried the np.vectorize but it is too slow...
Upvotes: 1
Views: 1473
Reputation: 67427
If f_int
wants single dimensional data, you should flatten your input, feed it to the interpolator, then reconstruct your original shape:
>>> x = np.arange(1, 100, 0.1)
>>> f = 2 * x # a simple function to see the results are good
>>> f_int = scipy.interpolate.InterpolatedUnivariateSpline(x, f, k=2)
>>> x = np.arange(25).reshape(5, 5) + 1
>>> x
array([[ 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10],
[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25]])
>>> x_int = f_int(x.reshape(-1)).reshape(x.shape)
>>> x_int
array([[ 2., 4., 6., 8., 10.],
[ 12., 14., 16., 18., 20.],
[ 22., 24., 26., 28., 30.],
[ 32., 34., 36., 38., 40.],
[ 42., 44., 46., 48., 50.]])
x.reshape(-1)
does the flattening, and the .reshape(x.shape)
returns it to its original form.
Upvotes: 2
Reputation: 10397
I think you want to do a vectorized function in numpy:
#create some random test data
test = numpy.random.random((100,100))
#a normal python function that you want to apply
def myFunc(i):
return np.exp(i)
#now vectorize the function so that it will work on numpy arrays
myVecFunc = np.vectorize(myFunc)
result = myVecFunc(test)
Upvotes: 1
Reputation: 3981
I would use a combination of a list comprehension
and map
(there might be a way to use two nested maps
that I'm missing)
In [24]: x
Out[24]: [[1, 2, 3], [1, 2, 3], [1, 2, 3]]
In [25]: [map(lambda a: a*0.1, x_val) for x_val in x]
Out[25]:
[[0.1, 0.2, 0.30000000000000004],
[0.1, 0.2, 0.30000000000000004],
[0.1, 0.2, 0.30000000000000004]]
this is just for illustration purposes.... replace lambda a: a*0.1
with your function, f_int
Upvotes: 0