Reputation: 73
Basically, my idea was to write some sort of basic server where I could connect to my computer and then run a command remotely. This didn't seem to be much of a problem; but then I had the bright idea that the next step would logically be to add some sort of threading so I could spawn multiple connections.
I read that, because of the GIL, multiprocessing.Process
would be the best to try to do this. I don't completely understand threading and it's hard to find good documentation on it; so I'm kind of just throwing stuff and trying to figure out how it works.
Well, it seems like I might be close to doing this right; but I have a feeling I'm just as likely to be no where near doing this correctly. My program now does allow multiple connections, which it didn't when I first started working with threading; but once a connection is established, and then another is established, the first connection is no longer able to send a command to the server. I would appreciate it if someone could give me any help, or point me in the right direction on what I need to learn and understand.
Here's my code:
class server:
def __init__(self):
self.s = socket.socket()
try:
self.s.bind(("",69696))
self.s.listen(1)
except socket.error,(value,message):
if self.s:
self.s.close()
def connection(self):
while True:
client , address = self.s.accept()
data = client.recv(5)
password = 'hello'
while 1:
if data == password:
subprocess.call('firefox')
client.close()
else:
client.send('wrong password')
data = client.recv(5)
p = Process(target=x.connection())
p.start()
x = server()
if __name__ == '__main':
main()
Upvotes: 3
Views: 180
Reputation: 3144
Well, this answer only applies if you're on a unix or unix-like operating system(windows does not have os.fork()
which we use).
One of the most common approaches for doing these things on unix platforms is to fork a new process to handle the client connection while the master process continues to listen for requests.
Below is code for a simple echo server that can handle multiple simultaneous connections. You just need to modify handle_client_connection()
to fit your needs
import socket
import os
class ForkingServer:
def serve_forever(self):
self.s = socket.socket()
try:
self.s.bind(("", 9000))
self.s.listen(1)
except socket.error, (value,message):
print "error:", message
if self.s:
self.s.close()
return
while True:
client,address = self.s.accept()
pid = os.fork()
# You should read the documentation for how fork() works if you don't
# know it already
# The short version is that at this point in the code, there are 2 processes
# completely identical to each other which are simulatenously executing
# The only difference is that the parent process gets the pid of the child
# returned from fork() and the child process gets a value of 0 returned
if pid == 0:
# only the newly spawned process will execute this
self.handle_client_connection(client, address)
break
# In the meantime the parent process will continue on to here
# thus it will go back to the beginning of the loop and accept a new connection
def handle_client_connection(self, client,address):
#simple echo server
print "Got a connection from:", address
while True:
data = client.recv(5)
if not data:
# client closed the connection
break
client.send(data)
print "Connection from", address, "closed"
server = ForkingServer()
server.serve_forever()
Upvotes: 1