Reputation: 97
I have a csv with 38 columns and 1500+ rows which contains floats and strings. I want 3 columns (x,y,z) of float data from this set to find the average of f=(x+y)/z
. After research I successfully isolated these columns as numpy arrays and performed f=(x+y)/z
. Now when I try to sum f the array isn't added up. I print f And I see 1500 items of correct values but not the sum of these.
reader=csv.reader(open('myfile.csv' ,"rb"),delimiter=',')
reader.next()
reader.next()
x=list(reader)
data=numpy.array(x)
rows=data.shape[0]
for i in range (0,rows):
x=numpy.array(data[i,18]).astype('float')
y=numpy.array(data[i,19]).astype('float')
z=numpy.array(data[i,6]).astype('float')
f=numpy.array((x+y)/z)
average=numpy.sum(f)/rows
print average
Upvotes: 3
Views: 1483
Reputation: 1421
Numpy allows you to operate on the arrays as a whole, you don't need to iterate through them.
reader=csv.reader(open('myfile.csv' ,"rb"),delimiter=',')
reader.next()
reader.next()
x=list(reader)
data=numpy.array(x)
rows=data.shape[0]
x=data[:,18].astype('float')
y=data[:,19].astype('float')
z=data[:,6].astype('float')
f = (x + y) / z
average = f.mean()
print average
Upvotes: 2
Reputation: 67427
If data
is already an array, you don't need the for
loop:
x = data[:, 18].astype(float)
y = data[:, 19].astype(float)
z = data[:, 6].astype(float)
f = (x+y) / z
average = np.average(f)
You would probably be better off by reading your file with np.loadtxt
:
data = np.loadtxt('myfile.csv', dtype=float, delimiter=',' skiprows=2,
usecols=(6, 18, 19))
or to get x
, y
and z
directly:
x, y, z = np.loadtxt('myfile.csv', dtype=float, delimiter=',' skiprows=2,
usecols=(6, 18, 19), unpack=True)
Upvotes: 5
Reputation: 13699
If you're not locked into numpy here is a pure python solution,
import csv
def f(x, y, z):
x = float(x)
y = float(y)
z = float(z)
return (x+y)/z
reader = csv.reader(open("derp.csv", 'r'))
rows = list(reader)
len_of_rows = len(rows)
f_values = []
for row in rows:
x = row[0]
y = row[1]
z = row[2]
f_values.append(f(x, y, z))
average = sum(f_values)/len_of_rows
print average
Here is what my derp.csv looks like
1,2,3
4,5,6
7,8,9
Upvotes: 0