Reputation: 2207
My goal is to do something so that for instance,
pairs<1,2,3,4>()
Has return type
std::tuple<some_other_type<1,2>, some_other_type<2,3>, some_other_type<3,4>>
I am wondering if this is even possible with C++ template metaprogramming, and how it could be accomplished. For actually producing the value, it seems as though I can use tuple_cat to recursively concatenate to the output, but I'm finding it difficult to express the return type, since it is itself variadic and effectively a function of the number of template parameters. Complicating the situation, if I went the tuple_cat route it seems like I would also have to overload the function to take a tuple to concatenate onto, and the concatenation would happen at runtime, not compile-time. Am I on a wild goose chase here?
Upvotes: 9
Views: 1336
Reputation: 9388
Here is my version of it (live here), 100% compile-time, returning the new parameter list as a type (not a function return):
First, let's define our result structures:
template<int a, int b>
struct tpair
{
};
template<typename... p>
struct final_
{
};
The key point is to concat parameters packs. Here is the struct that will do the job:
template<typename a, typename b>
struct concat
{
};
template<typename a, typename... b>
struct concat<a, final<b...>>
{
typedef final_<a,b...> type;
};
Now, the struct used to 'pairize' your list. Normally it will fail with odd numbers of values:
template<int a, int b, int... values>
struct pairize
{
// Choose one of the following versions:
// First version: only non-overlapping pairs : (1,2) (3,4) ...
typedef typename concat<tpair<a,b>, typename pairize<values...>::type>::type type;
// Second version: overlapping pairs : (1,2) (2,3) (3,4)...
typedef typename concat<tpair<a,b>, typename pairize<b,values...>::type>::type type;
};
template<int a, int b>
struct pairize<a,b>
{
typedef final_<tpair<a,b>> type;
};
In the live example there is also a code outputting the name of all types in a parameter pack to the console, with demangling, as a test (was funnier to use than the incomplete type trick).
Upvotes: 5
Reputation: 126422
Here is a way of doing that. Given your class template some_other_type
:
template<int I, int J>
struct some_other_type { };
And given some machinery hidden in the detail
namespace:
namespace detail
{
template<int... Is>
struct pairs { };
template<int I, int J>
struct pairs<I, J>
{
using type = std::tuple<some_other_type<I, J>>;
};
template<int I, int J, int... Is>
struct pairs<I, J, Is...>
{
using type = decltype(std::tuple_cat(
std::tuple<some_other_type<I, J>>(),
typename pairs<J, Is...>::type()));
};
}
You could provide a simple function that instantiates the helper class template:
template<int... Is>
typename detail::pairs<Is...>::type pairs()
{
return typename detail::pairs<Is...>::type();
}
And here is how you would use it (and a test case):
#include <type_traits>
int main()
{
auto p = pairs<1, 2, 3, 4>();
// Won't fire!
static_assert(
std::is_same<
decltype(p),
std::tuple<
some_other_type<1,2>,
some_other_type<2,3>,
some_other_type<3,4>>
>::value,
"Error!");
}
Finally, here is a live example.
IMPROVEMENT: (why writing <1, 2, 3, 4>
when one could write <1, 5>
)?
It is also possible to extend the above solution so that it won't be required to manually write every number between the minimum and the maximum as a template argument of pairs()
. Given the additional machinery below, again hidden in a detail
namespace:
namespace detail
{
template <int... Is>
struct index_list { };
template <int MIN, int N, int... Is>
struct range_builder;
template <int MIN, int... Is>
struct range_builder<MIN, MIN, Is...>
{
typedef index_list<Is...> type;
};
template <int MIN, int N, int... Is>
struct range_builder : public range_builder<MIN, N - 1, N - 1, Is...>
{ };
// Meta-function that returns a [MIN, MAX) index range
template<int MIN, int MAX>
using index_range = typename range_builder<MIN, MAX>::type;
template<int... Is>
auto pairs_range(index_list<Is...>) -> decltype(::pairs<Is...>())
{
return ::pairs<Is...>();
}
}
It is possible to define a helper function pairs_range()
which accepts 2 template arguments defining the range [begin, end)
- where end
is not included, in the style of the Standard Library:
template<int I, int J>
auto pairs_range() -> decltype(pairs_range(detail::index_range<I, J>()))
{
return pairs_range(detail::index_range<I, J>());
}
And this is how one would use it (including a test case):
int main()
{
// Won't fire!
static_assert(
std::is_same<
decltype(pairs_range<1, 5>()),
decltype(pairs<1, 2, 3, 4>())
>::value,
"Error!");
}
And once again, here is a live example.
Upvotes: 12
Reputation: 56863
And now, let's try it with indices
and without recursion (except, of course, for the indices):
#include <tuple>
template< std::size_t... Ns >
struct indices
{
typedef indices< Ns..., sizeof...( Ns ) > next;
};
template< std::size_t N >
struct make_indices
{
typedef typename make_indices< N - 1 >::type::next type;
};
template<>
struct make_indices< 0 >
{
typedef indices<> type;
};
template< std::size_t, std::size_t >
struct sometype {};
template< typename, typename, typename >
struct make_pairs;
template< std::size_t... Ns, std::size_t... Ms, std::size_t... Is >
struct make_pairs< indices< Ns... >, indices< Ms... >, indices< Is... > >
{
using type = decltype( std::tuple_cat(
std::declval< typename std::conditional< Is % 2 == 1,
std::tuple< sometype< Ns, Ms > >,
std::tuple<> >::type >()...
));
};
template< std::size_t... Ns >
using pairs = typename make_pairs< indices< 0, Ns... >, indices< Ns..., 0 >,
typename make_indices< sizeof...( Ns ) + 1 >::type >::type;
int main()
{
static_assert( std::is_same< pairs<1,2,4,3,5,9>,
std::tuple< sometype<1,2>, sometype<4,3>, sometype<5,9> > >::value, "Oops" );
}
(OK, I cheated a bit: std::tuple_cat
might be recursive itself ;)
Update: OK, I should have read the question more carefully. Here's the version which produces the desired result (indices
/ make_indices
as above):
template< std::size_t, std::size_t >
struct sometype {};
template< typename, typename, typename >
struct make_pairs;
template< std::size_t... Ns, std::size_t... Ms, std::size_t... Is >
struct make_pairs< indices< Ns... >, indices< Ms... >, indices< Is... > >
{
using type = decltype( std::tuple_cat(
std::declval< typename std::conditional< Is != 0 && Is != sizeof...( Is ) - 1,
std::tuple< sometype< Ns, Ms > >,
std::tuple<> >::type >()...
));
};
template< std::size_t... Ns >
using pairs = typename make_pairs< indices< 0, Ns... >, indices< Ns..., 0 >,
typename make_indices< sizeof...( Ns ) + 1 >::type >::type;
int main()
{
static_assert( std::is_same< pairs<1,2,3,4>,
std::tuple< sometype<1,2>, sometype<2,3>, sometype<3,4> > >::value, "Oops" );
}
Upvotes: 3