Reputation: 87
I have a filter class that takes two template parameters, the number of inputs and the number of outputs.
template<int Ins, int Outs>
class Filter
{
// implementation
};
Sometimes I need to chain multiple filters in series so I was thinking to wrap them in a class
template<int... args>
class Chain
{
};
so that when I use the chain
Chain<5, 10, 25, 15> chain;
it unrolls the args into a tuple to end up with something like this in the Chain class
std::tuple<Filter<5, 10>, Fiter<10, 25>, Filter<25, 15>> filters;
Is something like this possible? I'm fairly new to these concepts and can't wrap my head around it.
Upvotes: 3
Views: 1387
Reputation: 137315
We can do this in three lines and no recursion:
template<int... args>
struct Chain
{
// put args... into a constexpr array for indexing
static constexpr int my_args[] = {args...};
// undefined helper function that computes the desired type in the return type
// For Is... = 0, 1, ..., N-2, Filter<my_args[Is], my_args[Is+1]>...
// expands to Filter<my_args[0], my_args[1]>,
// Filter<my_args[1], my_args[2]>, ...,
// Filter<my_args[N-2], my_args[N-1]>
template<size_t... Is>
static std::tuple<Filter<my_args[Is], my_args[Is+1]>...>
helper(std::index_sequence<Is...>);
// and the result
using tuple_type = decltype(helper(std::make_index_sequence<sizeof...(args) - 1>()));
};
Demo.
Upvotes: 9
Reputation: 65620
We can do this with some recursive template magic:
//helper class template which will handle the recursion
template <int... Args>
struct FiltersFor;
//a helper to get the type of concatenating two tuples
template <typename Tuple1, typename Tuple2>
using tuple_cat_t = decltype(std::tuple_cat(std::declval<Tuple1>(),
std::declval<Tuple2>()));
//pop off two ints from the pack, recurse
template <int Ins, int Outs, int... Others>
struct FiltersFor<Ins,Outs,Others...>
{
//the type of concatenating a tuple of Filter<Ins,Outs> with the tuple from recursion
using type = tuple_cat_t<std::tuple<Filter<Ins,Outs>>,
typename FiltersFor<Outs,Others...>::type>;
};
//base case, 1 int left
template <int Dummy>
struct FiltersFor<Dummy>
{
using type = std::tuple<>;
};
//for completeness
template <>
struct FiltersFor<>
{
using type = std::tuple<>;
};
//our front-end struct
template<int... args>
using Chain = typename FiltersFor<args...>::type;
Alternatively, we can get rid of the single int and no int versions and define the primary template like this:
template <int... Args>
struct FiltersFor
{
using type = std::tuple<>;
};
Now we can test this like so:
static_assert(std::is_same<Chain<1,2,3,4>, std::tuple<Filter<1,2>,Filter<2,3>,Filter<3,4>>>::value, "wat");
static_assert(std::is_same<Chain<1,2>, std::tuple<Filter<1,2>>>::value, "wat");
static_assert(std::is_same<Chain<>, std::tuple<>>::value, "wat");
Upvotes: 5
Reputation: 5230
I already faced a similar problem and ended up with an operator* for class Filter tha accepts a Filter<Ins1, Ins>
object and builds a Filter<Ins1, Outs>
.
template<int Ins, int Outs>
class Filter
{
template <int Ins1>
Filter<Ins1, Outs> operator*(const Filter<Ins1, Ins> &rhs) const
{
// implementation
}
};
Now the question is: what your filter does? Is composition possible (maybe I am biased from the fact that in my context Filter was a function and in my case operator* was function composition)
Upvotes: 0