Reputation: 4426
How do I numerically solve an ODE in Python?
Consider
\ddot{u}(\phi) = -u + \sqrt{u}
with the following conditions
u(0) = 1.49907
and
\dot{u}(0) = 0
with the constraint
0 <= \phi <= 7\pi.
Then finally, I want to produce a parametric plot where the x and y coordinates are generated as a function of u.
The problem is, I need to run odeint twice since this is a second order differential equation. I tried having it run again after the first time but it comes back with a Jacobian error. There must be a way to run it twice all at once.
Here is the error:
odepack.error: The function and its Jacobian must be callable functions
which the code below generates. The line in question is the sol = odeint.
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
from numpy import linspace
def f(u, t):
return -u + np.sqrt(u)
times = linspace(0.0001, 7 * np.pi, 1000)
y0 = 1.49907
yprime0 = 0
yvals = odeint(f, yprime0, times)
sol = odeint(yvals, y0, times)
x = 1 / sol * np.cos(times)
y = 1 / sol * np.sin(times)
plot(x,y)
plt.show()
Edit
I am trying to construct the plot on page 9
Here is the plot with Mathematica
In[27]:= sol =
NDSolve[{y''[t] == -y[t] + Sqrt[y[t]], y[0] == 1/.66707928,
y'[0] == 0}, y, {t, 0, 10*\[Pi]}];
In[28]:= ysol = y[t] /. sol[[1]];
In[30]:= ParametricPlot[{1/ysol*Cos[t], 1/ysol*Sin[t]}, {t, 0,
7 \[Pi]}, PlotRange -> {{-2, 2}, {-2.5, 2.5}}]
Upvotes: 14
Views: 60924
Reputation: 578
You can use scipy.integrate.ode. To solve dy/dt = f(t,y), with initial condition y(t0)=y0, at time=t1 with 4th order Runge-Kutta you could do something like this:
from scipy.integrate import ode
solver = ode(f).set_integrator('dopri5')
solver.set_initial_value(y0, t0)
dt = 0.1
while t < t1:
y = solver.integrate(t+dt)
t += dt
Edit: You have to get your derivative to first order to use numerical integration. This you can achieve by setting e.g. z1=u and z2=du/dt, after which you have dz1/dt = z2 and dz2/dt = d^2u/dt^2. Substitute these into your original equation, and simply iterate over the vector dZ/dt, which is first order.
Edit 2: Here's an example code for the whole thing:
import numpy as np
import matplotlib.pyplot as plt
from numpy import sqrt, pi, sin, cos
from scipy.integrate import ode
# use z = [z1, z2] = [u, u']
# and then f = z' = [u', u''] = [z2, -z1+sqrt(z1)]
def f(phi, z):
return [z[1], -z[0]+sqrt(z[0])]
# initialize the 4th order Runge-Kutta solver
solver = ode(f).set_integrator('dopri5')
# initial value
z0 = [1.49907, 0.]
solver.set_initial_value(z0)
values = 1000
phi = np.linspace(0.0001, 7.*pi, values)
u = np.zeros(values)
for ii in range(values):
u[ii] = solver.integrate(phi[ii])[0] #z[0]=u
x = 1. / u * cos(phi)
y = 1. / u * sin(phi)
plt.figure()
plt.plot(x,y)
plt.grid()
plt.show()
Upvotes: 3
Reputation: 880877
import scipy.integrate as integrate
import matplotlib.pyplot as plt
import numpy as np
pi = np.pi
sqrt = np.sqrt
cos = np.cos
sin = np.sin
def deriv_z(z, phi):
u, udot = z
return [udot, -u + sqrt(u)]
phi = np.linspace(0, 7.0*pi, 2000)
zinit = [1.49907, 0]
z = integrate.odeint(deriv_z, zinit, phi)
u, udot = z.T
# plt.plot(phi, u)
fig, ax = plt.subplots()
ax.plot(1/u*cos(phi), 1/u*sin(phi))
ax.set_aspect('equal')
plt.grid(True)
plt.show()
Upvotes: 28
Reputation: 5522
The code from your other question is really close to what you want. Two changes are needed:
deriv
)y
component of your desired plot comes from the solution values, not from the values of the first derivative of the solution, so you need to replace u[:,0]
(function values) for u[:, 1]
(derivatives).This is the end result:
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint
def deriv(u, t):
return np.array([u[1], -u[0] + np.sqrt(u[0])])
time = np.arange(0.01, 7 * np.pi, 0.0001)
uinit = np.array([1.49907, 0])
u = odeint(deriv, uinit, time)
x = 1 / u[:, 0] * np.cos(time)
y = 1 / u[:, 0] * np.sin(time)
plt.plot(x, y)
plt.show()
However, I suggest that you use the code from unutbu's answer because it's self documenting (u, udot = z
) and uses np.linspace
instead of np.arange
. Then, run this to get your desired figure:
x = 1 / u * np.cos(phi)
y = 1 / u * np.sin(phi)
plt.plot(x, y)
plt.show()
Upvotes: 4
Reputation: 7805
scipy.integrate() does ODE integration. Is that what you are looking for?
Upvotes: 2