Reputation: 11
I was writing some code to solve 2nd order differential equation, but it gives a completely wrong result. I think that the problem is in expressing Euler method in the right way. I also tried another 2nd order ODE, but I also failed at approximating y(x). Could you point where the mistake could be? Please see the graph and the code:
Solving ODE:
y"(x)=-1001y'(x)-1000y(x)
y(0)=1, y'(0)=0
Analytical solution:
y(x)=(1000exp(-x)-exp(-1000x))/999
Rewriting as a system of 2 ODEs;
y'(x)=v(x)
v'(x)=-1001v(x)-1000y(x)=f(x,y,v)
y(0)=1,v(0)=0
The code in Jupyter Notebook (Python):
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
a=-0.0020
b=0.0
h=0.0005 #step size
x=np.arange(a,b,h)
n=int((b-a)/h)
def y_exact(x):
return (1000*np.exp(-x)-np.exp(-1000*x))/999
def f(y,v):
return -1001*v-1000*y
y_eu=np.zeros(n,float)
y_ei=np.zeros(n,float)
y_eu[0]=1.0
y_ei[0]=1.0
v_eu[0]=0.0
v_ei[0]=0.0
for j in range(0,n-1):
#Euler's method (explicit)
y_eu[j+1]=y_eu[j]+v_eu[j]*h
v_eu[j+1]=v_eu[j]+f(y_eu[j],v_eu[j])*h
#Implicit Euler's method
v_ei[j+1]=(v_ei[j]-1000*y_ei[j]*h)/(1+1001*h+1000*h**2)
y_ei[j+1]=y_ei[j]+v_ei[j+1]*h
plt.plot(x,y_exact(x),label="Exact solution")
plt.plot(x,y_eu,label="Euler's method")
plt.plot(x,y_ei,label="Implicit Euler's method")
plt.legend()
plt.show()
Thanks!
Upvotes: 0
Views: 6083
Reputation: 11
Thanks to commenter Maarten Fabre's answer. The code did not work properly because initial conditions, that is y0 and v0 for Euler's method were taken wrongly:
def y_exact(x):
return (1000*np.exp(-x)-np.exp(-1000*x))/999
def dydx_exact(x):
return -1000*(np.exp(-x)-np.exp(-1000*x))/999
y_eu[0]=y_exact(a)
v_eu[0]=dydx_exact(a)
Upvotes: 1