Reputation: 1045
What I try to do is to come up with a case class which I can use in pattern matching which has exactly one field, e.g. an immutable set. Furthermore, I would like to make use of functions like map, foldLeft and so on which should be passed down to the set. I tried it as in the following:
case class foo(s:Set[String]) extends Iterable[String] {
override def iterator = s.iterator
}
Now if I try to make use of e.g. the map function, I get an type error:
var bar = foo(Set() + "test1" + "test2")
bar = bar.map(x => x)
found : Iterable[String]
required: foo
bar = bar.map(x => x)
^
The type error is perfectly fine (in my understanding). However, I wonder how one would implement a wrapper case class for a collection such that one can call map, foldLeft and so on and still receive an object of the case class. Would one need to override all these functions or is there some other way around?
Edit
I'm inclined to accept the solution of Régis Jean-Gilles which works for me. However, after Googling for hours I found another interesting Scala trait named SetProxy
. I couldn't find any trivial examples so I'm not sure if this trait does what I want:
Set
My first idea was to extend Set
but my custom type Foo
already extends another class. Therefore, the second idea was to mixin the trait Iterable and IterableLike. Now I red about the trait SetProxy
which made me think about which is "the best" way to go. What are your thoughts and experiences?
Since I started learning Scala three days ago, any pointers are highly appreciated!
Upvotes: 4
Views: 875
Reputation: 32719
Hmm this sounds promissing to me but Scala says that variable b is of type Iterable[String] and not of type Foo, i.e. I do not see how IterableLike helps in this situation
You are right. Merely inheriting from IterableLike
as shown by mpartel will make the return type of some methods more precise (such as filter
, which will return Foo
), but for others such as map
of flatMap
you will need to provide an appopriate CanBuildFrom
implicit.
Here is a code snippet that does just that:
import collection.IterableLike
import collection.generic.CanBuildFrom
import collection.mutable.Builder
case class Foo( s:Set[String] ) extends Iterable[String] with IterableLike[String, Foo] {
override def iterator = s.iterator
override protected[this] def newBuilder: scala.collection.mutable.Builder[String, Foo] = new Foo.FooBuilder
def +(elem: String ): Foo = new Foo( s + elem )
}
object Foo {
val empty: Foo = Foo( Set.empty[String] )
def apply( elems: String* ) = new Foo( elems.toSet )
class FooBuilder extends Builder[String, Foo] {
protected var elems: Foo = empty
def +=(x: String): this.type = { elems = elems + x; this }
def clear() { elems = empty }
def result: Foo = elems
}
implicit def canBuildFrom[T]: CanBuildFrom[Foo, String, Foo] = new CanBuildFrom[Foo, String, Foo] {
def apply(from: Foo) = apply()
def apply() = new FooBuilder
}
}
And some test in the repl:
scala> var bar = Foo(Set() + "test1" + "test2")
bar: Foo = (test1, test2)
scala> bar = bar.map(x => x) // compiles just fine because map now returns Foo
bar: Foo = (test1, test2)
Upvotes: 5
Reputation: 4492
Inheriting IterableLike[String, Foo]
gives you all those methods such that they return Foo. IterableLike
requires you to implement newBuilder
in addition to iterator
.
import scala.collection.IterableLike
import scala.collection.mutable.{Builder, SetBuilder}
case class Foo(stuff: Set[String]) extends Iterable[String] with IterableLike[String, Foo] {
def iterator: Iterator[String] = stuff.iterator
protected[this] override def newBuilder: Builder[String, Foo] = {
new SetBuilder[String, Set[String]](Set.empty).mapResult(Foo(_))
}
}
// Test:
val a = Foo(Set("a", "b", "c"))
val b = a.map(_.toUpperCase)
println(b.toList.sorted.mkString(", ")) // Prints A, B, C
Upvotes: 1