Reputation: 3400
I have a situation where I have a couple of case classes where all of their variables are optional.
Let's say I have:
case class Size(width: Option[Int], height: Option[Int])
case class Foo(a: Option[String], b: Option[Boolean], c: Option[Char])
Given a collection of the same type of case class I would like to fold over them comparing the option values and keep the values which are defined. I.e. for Size
:
values.foldLeft(x) { (a, b) =>
Size(a.width.orElse(b.width), a.height.orElse(b.height))
}
I would like to do this in a more general way for any of the case classes like the ones above. I'm thinking about doing something with unapply(_).get
etc. Does anyone know a smart way to solve this?
Upvotes: 3
Views: 1313
Reputation: 54584
[Code updated]
Here is an solution which requires only one abstract class per "arity":
abstract class Foldable2[A,B](val a:Option[A], val b:Option[B]) {
def orElse[F <: Foldable2[A,B]](that: F)(implicit ev: this.type <:< F) =
getClass.getConstructor(classOf[Option[A]], classOf[Option[B]]).newInstance(
this.a.orElse(that.a), this.b.orElse(that.b)
)
}
case class Size(w: Option[Int], h: Option[Int]) extends Foldable2(w, h)
println(Size(Some(1),None).orElse(Size(Some(2),Some(42))))
//--> Size(Some(1),Some(42))
Note that the implicit <:<
argument will give a compile time error when other case classes with the same constructor arguments are passed to the method.
However, a "well formed" constructor is required, else the reflection code will blow up.
Upvotes: 2
Reputation: 297195
Ok, consider this:
def foldCase[C,T1](unapply: C => Option[Option[T1]], apply: Option[T1] => C)
(coll: Seq[C]): C = {
coll.tail.foldLeft(coll.head) { case (current, next) =>
apply(unapply(current).get orElse unapply(next).get)
}
}
case class Person(name: Option[String])
foldCase(Person.unapply, Person.apply)(List(Person(None), Person(Some("Joe")), Person(Some("Mary"))))
One could overload foldCase
to accept two, three, or more parameters, one version of f for each arity. It could then be used with any case class. Since there's the tuple-thing to worry about, below's one way to make it work with case classes or two parameters. Expanding it to more parameters is then trivial, though a bit tiresome.
def foldCase[C,T1,T2](unapply: C => Option[(Option[T1], Option[T2])], apply: (Option[T1], Option[T2]) => C)
(coll: Seq[C]): C = {
def thisOrElse(current: (Option[T1], Option[T2]), next: (Option[T1], Option[T2])) =
apply(current._1 orElse next._1, current._2 orElse next._2)
coll.tail.foldLeft(coll.head) { case (current, next) =>
thisOrElse(unapply(current).get, unapply(next).get)
}
}
val list = Person(None, None) :: Person(Some("Joe"), None) :: Person(None, Some(20)) :: Person(Some("Mary"), Some(25)) :: Nil
def foldPerson = foldCase(Person.unapply, Person.apply) _
foldPerson(list)
To use it overloaded, just put all definitions inside one object:
object Folder {
def foldCase[C,T1](unapply: C => Option[Option[T1]], apply: Option[T1] => C)
(coll: Seq[C]): C = {
coll.tail.foldLeft(coll.head) { case (current, next) =>
apply(unapply(current).get orElse unapply(next).get)
}
}
def foldCase[C,T1,T2](unapply: C => Option[(Option[T1], Option[T2])], apply: (Option[T1], Option[T2]) => C)
(coll: Seq[C]): C = {
def thisOrElse(current: (Option[T1], Option[T2]), next: (Option[T1], Option[T2])) =
apply(current._1 orElse next._1, current._2 orElse next._2)
coll.tail.foldLeft(coll.head) { case (current, next) =>
thisOrElse(unapply(current).get, unapply(next).get)
}
}
}
When you do this, however, you'll have to explicitly turn apply
and unapply
into functions:
case class Question(answer: Option[Boolean])
val list2 = List(Question(None), Question(Some(true)), Question(Some(false)))
Folder.foldCase(Question.unapply _, Question.apply _)(list2)
It might be possible to turn it into a structural type, so that you only need to pass the companion object, but I couldn't do it. On #scala, I was told the answer is a definitive no, at least to how I approached the problem.
Upvotes: 2
Reputation: 7979
You can use productElement
or productIterator
(on scala.Product) to generically retrieve/iterate the elements of case classes (and tuples), but they're typed as Any, so there will be some pain.
Upvotes: 1