Reputation: 10012
I'm trying to detect the black square.
Here is my code sofar...
frame=cv2.imread('squares.jpg')
img=cv2.GaussianBlur(frame, (5,5), 0)
img=cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
lower=np.array([0, 0, 0],np.uint8)
upper=np.array([10, 50, 50],np.uint8)
separated=cv2.inRange(img,lower,upper)
#this bit draws a red rectangle around the detected region
contours,hierarchy=cv2.findContours(separated,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
max_area = 0
largest_contour = None
for idx, contour in enumerate(contours):
area = cv2.contourArea(contour)
if area > max_area:
max_area = area
largest_contour=contour
if not largest_contour==None:
moment = cv2.moments(largest_contour)
if moment["m00"] > 1000:
rect = cv2.minAreaRect(largest_contour)
rect = ((rect[0][0], rect[0][1]), (rect[1][0], rect[1][1]), rect[2])
(width,height)=(rect[1][0],rect[1][1])
print str(width)+" "+str(height)
box = cv2.cv.BoxPoints(rect)
box = np.int0(box)
if(height>0.9*width and height<1.1*width):
cv2.drawContours(frame,[box], 0, (0, 0, 255), 2)
cv2.imshow('img',frame)
I'm then trying to draw a red square around the detected black region.
The code works for yellow, orange, red and green with the following parameters:
colours=['yellow','orange','red','green','black','white']
uppers=[[20,100,100],[5,100,100],[0,100,100],[???,???,???],[???,???,???]]
lowers=[[30,255,255],[15,255,255],[6,255,255],[???,???,???],[???,???,???]]
I just can't get black or white to work...
Any thoughts?
Upvotes: 3
Views: 9283
Reputation: 11329
The key intuition here is that black is located at all hue and saturation values in the HSV cylinder, but only at low value values. I found that a lower bound [0, 0, 0]
and an upper bound [180, 255, 50]
will locate the black square, like so:
I should also mention that your method will not work for finding the white squares, for several reasons:
Upvotes: 4