Reputation: 93014
I have an application where I want to sort an array a of elements a0, a1,...,an-1. I have a comparison function cmp(i,j) that compares elements ai and aj and a swap function swap(i,j), that swaps elements ai and aj of the array. In the application, execution of the cmp(i,j) function might be extremely expensive, to the point where one execution of cmp(i,j) takes longer than any other steps in the sort (except for other cmp(i,j) calls, of course) together. You may think of cmp(i,j) as a rather lengthy IO operation.
Please assume for the sake of this question that there is no way to make cmp(i,j) faster. Assume all optimizations that could possibly make cmp(i,j) faster have already been done.
Is there a sorting algorithm that minimizes the number of calls to cmp(i,j)?
It is possible in my application to write a predicate expensive(i,j) that is true iff a call to cmp(i,j) would take a long time. expensive(i,j) is cheap and expensive(i,j) ∧ expensive(j,k) → expensive(i,k) mostly holds in my current application. This is not guaranteed though.
Would the existance of expensive(i,j) allow for a better algorithm that tries to avoid expensive comparing operations? If yes, can you point me to such an algorithm?
I'd like pointers to further material on this topic.
This is an example that is not entirely unlike the application I have.
Consider a set of possibly large files. In this application the goal is to find duplicate files among them. This essentially boils down to sorting the files by some arbitrary criterium and then traversing them in order, outputting sequences of equal files that were encountered.
Of course reader in large amounts of data is expensive, therefor one can, for instance, only read the first megabyte of each file and calculate a hash function on this data. If the files compare equal, so do the hashes, but the reverse may not hold. Two large file could only differ in one byte near the end.
The implementation of expensive(i,j) in this case is simply a check whether the hashes are equal. If they are, an expensive deep comparison is neccessary.
Upvotes: 25
Views: 3310
Reputation: 372814
The theoretical minimum number of comparisons needed to sort an array of n elements on average is lg (n!), which is about n lg n - n. There's no way to do better than this on average if you're using comparisons to order the elements.
Of the standard O(n log n) comparison-based sorting algorithms, mergesort makes the lowest number of comparisons (just about n lg n, compared with about 1.44 n lg n for quicksort and about n lg n + 2n for heapsort), so it might be a good algorithm to use as a starting point. Typically mergesort is slower than heapsort and quicksort, but that's usually under the assumption that comparisons are fast.
If you do use mergesort, I'd recommend using an adaptive variant of mergesort like natural mergesort so that if the data is mostly sorted, the number of comparisons is closer to linear.
There are a few other options available. If you know for a fact that the data is already mostly sorted, you could use insertion sort or a standard variation of heapsort to try to speed up the sorting. Alternatively, you could use mergesort but use an optimal sorting network as a base case when n is small. This might shave off enough comparisons to give you a noticeable performance boost.
Hope this helps!
Upvotes: 8
Reputation: 3230
Quicksort and mergesort are the fastest possible sorting algorithm, unless you have some additional information about the elements you want to sort. They will need O(n log(n)) comparisons, where n is the size of your array. It is mathematically proved that any generic sorting algorithm cannot be more efficient than that.
If you want to make the procedure faster, you might consider adding some metadata to accelerate the computation (can't be more precise unless you are, too).
If you know something stronger, such as the existence of a maximum and a minimum, you can use faster sorting algorithms, such as radix sort or bucket sort.
You can look for all the mentioned algorithms on wikipedia.
As far as I know, you can't benefit from the expensive relationship. Even if you know that, you still need to perform such comparisons. As I said, you'd better try and cache some results.
Here is the description of the algorithm. It's worth nothing saying that it will perform much worse than a simple merge sort, unless m is big and k is little. The total running time is O[n^4 + E(n-m)log(k)], where E is the cost of an expensive comparison (I assumed E >> n, to prevent it from being wiped out from the asymptotic notation. That n^4 can probably be further reduced, at least in the mean case.
Upvotes: 0
Reputation: 22555
We can look at your problem in the another direction, Seems your problem is IO related, then you can use advantage of parallel sorting algorithms, In fact you can run many many threads to run comparison on files, then sort them by one of a best known parallel algorithms like Sample sort algorithm.
Upvotes: 0
Reputation: 24647
Is there a sorting algorithm that minimizes the number of calls to cmp(i,j)?
Merge insertion algorithm, described in D. Knuth's "The art of computer programming", Vol 3, chapter 5.3.1, uses less comparisons than other comparison-based algorithms. But still it needs O(N log N) comparisons.
Would the existence of expensive(i,j) allow for a better algorithm that tries to avoid expensive comparing operations? If yes, can you point me to such an algorithm?
I think some of existing sorting algorithms may be modified to take into account expensive(i,j)
predicate. Let's take the simplest of them - insertion sort. One of its variants, named in Wikipedia as binary insertion sort, uses only O(N log N) comparisons.
It employs a binary search to determine the correct location to insert new elements. We could apply expensive(i,j)
predicate after each binary search step to determine if it is cheap to compare the inserted element with "middle" element found in binary search step. If it is expensive we could try the "middle" element's neighbors, then their neighbors, etc. If no cheap comparisons could be found we just return to the "middle" element and perform expensive comparison.
There are several possible optimizations. If predicate and/or cheap comparisons are not so cheap we could roll back to the "middle" element earlier than all other possibilities are tried. Also if move operations cannot be considered as very cheap, we could use some order statistics data structure (like Indexable skiplist) do reduce insertion cost to O(N log N).
This modified insertion sort needs O(N log N) time for data movement, O(N2) predicate computations and cheap comparisons and O(N log N) expensive comparisons in the worst case. But more likely there would be only O(N log N) predicates and cheap comparisons and O(1) expensive comparisons.
Consider a set of possibly large files. In this application the goal is to find duplicate files among them.
If the only goal is to find duplicates, I think sorting (at least comparison sorting) is not necessary. You could just distribute the files between buckets depending on hash value computed for first megabyte of data from each file. If there are more than one file in some bucket, take other 10, 100, 1000, ... megabytes. If still more than one file in some bucket, compare them byte-by-byte. Actually this procedure is similar to radix sort.
Upvotes: 1
Reputation: 210455
Is there a sorting algorithm that minimizes the number of calls to cmp(i,j)?
Edit: Ah, sorry. There are algorithms that minimize the number of comparisons (below), but not that I know of for specific elements.
Would the existence of expensive(i,j) allow for a better algorithm that tries to avoid expensive comparing operations? If yes, can you point me to such an algorithm?
Not that I know of, but perhaps you'll find it in these papers below.
I'd like pointers to further material on this topic.
On Optimal and Efficient in Place Merging
Stable Minimum Storage Merging by Symmetric Comparisons
Optimal Stable Merging (this one seems to be O(n log2 n) though
If you implement any of them, posting them here might be useful for others too! :)
Upvotes: 2
Reputation: 170
Something to keep in mind is that if you are continuously sorting the list with new additions, and the comparison between two elements is guaranteed to never change, you can memoize the comparison operation which will lead to a performance increase. In most cases this won't be applicable, unfortunately.
Upvotes: 0
Reputation: 5823
I'll try to answer each question as best as I can.
Traditional sorting methods may have some variation, but in general, there is a mathematical limit to the minimum number of comparisons necessary to sort a list, and most algorithms take advantage of that, since comparisons are often not inexpensive. You could try sorting by something else, or try using a shortcut that may be faster that may approximate the real solution.
I don't think you can get around the necessity of doing at least the minimum number of comparisons, but you may be able to change what you compare. If you can compare hashes or subsets of the data instead of the whole thing, that could certainly be helpful. Anything you can do to simplify the comparison operation will make a big difference, but without knowing specific details of the data, it's hard to suggest specific solutions.
Check these out:
Upvotes: 9
Reputation: 531165
A technique called the Schwartzian transform can be used to reduce any sorting problem to that of sorting integers. It requires you to apply a function f
to each of your input items, where f(x) < f(y)
if and only if x < y
.
(Python-oriented answer, when I thought the question was tagged [python]
)
If you can define a function f
such that f(x) < f(y)
if and only if x < y
, then you can sort using
sort(L, key=f)
Python guarantees that key
is called at most once for each element of the iterable you are sorting. This provides support for the Schwartzian transform.
Python 3 does not support specifying a cmp
function, only the key
parameter. This page provides a way of easily converting any cmp
function to a key
function.
Upvotes: 4
Reputation: 3367
Most sorting algorithm out there try minimize the amount of comparisons during sorting.
My advice: Pick quick-sort as a base algorithm and memorize results of comparisons just in case you happen to compare the same problems again. This should help you in the O(N^2) worst case of quick-sort. Bear in mind that this will make you use O(N^2) memory.
Now if you are really adventurous you could try the Dual-Pivot quick-sort.
Upvotes: 0