Reputation: 3872
I want to sort items where the comparison is performed by humans:
For these tasks the number of comparisons is the limiting factor for performance.
Upvotes: 13
Views: 4359
Reputation: 7408
https://stackoverflow.com/a/53979250/2829764 points to Merge-insertion sort, as "perhaps still the best freely-documented sorting algorithm for minimal comparisons."
The answer also notes
Glenn K. Manacher's algorithm “and later record-breaking sorting algorithms” (none of which, unfortunately, seem to be freely documented at this time) are reported to adapt the merge-insertion sort algorithm to offer even fewer comparisons.
However, you might consider how many things you're sorting. In your case, it's probably not too many. The asymptotic results in books may not apply. Instead you (or whoever is reading this answer years later) might want to generate random permutations of realistic size for your problem and see how many comparisons it takes to sort them. For 500 items either Ford-Johnson or a traditional merge sort are already 3,800 comparisons. That's a lot for a human.
Upvotes: 0
Reputation: 81105
If comparisons are expensive relative to book-keeping costs, you might try the following algorithm which I call "tournament sort". First, some definitions:
To run the algorithm, initially assign every node a score of 1. Repeatedly compare the two lowest-scoring eligible nodes; after each comparison, mark the loser "ineligible", and add the loser's score to the winner's (the loser's score is unaltered). Set the loser's "fellow loser" property to the winner's "last-beat", and the winner's "last-beat" property to the loser. Iterate this until only one eligible node remains. Output that node, and make eligible all nodes the winner beat (using the winner's "last-beat" and the chain of "fellow-loser" properties). Then continue the algorithm on the remaining nodes.
The number of comparisons with 1,000,000 items was slightly lower than that of a stock library implementation of Quicksort; I'm not sure how the algorithm would compare against a more modern version of QuickSort. Bookkeeping costs are significant, but if comparisons are sufficiently expensive the savings could possibly be worth it. One interesting feature of this algorithm is that it will only perform comparisons relevant to determining the next node to be output; I know of no other algorithm with that feature.
Upvotes: 2
Reputation: 4660
To answer this, we need to make a lot of assumptions.
Let's assume we are sorting pictures by cuteness. The goal is to get the maximum usable information from the human in the least amount of time. This interaction will dominate all other computation, so it's the only one that counts.
As someone else mentioned, humans can deal well with ordering several items in one interaction. Let's say we can get eight items in relative order per round.
Each round introduces seven edges into a directed graph where the nodes are the pictures. If node A is reachable from node B, then node A is cuter than node B. Keep this graph in mind.
Now, let me tell you about a problem the Navy and the Air Force solve differently. They both want to get a group of people in height order and quickly. The Navy tells people to get in line, then if you're shorter than the guy in front of you, switch places, and repeat until done. In the worst case, it's N*N comparison.
The Air Force tells people to stand in a square grid. They shuffle front-to-back on sqrt(N) people, which means worst case sqrt(N)*sqrt(N) == N comparisons. However, the people are only sorted along one dimension. So therefore, the people face left, then do the same shuffle again. Now we're up to 2*N comparisons, and the sort is still imperfect but it's good enough for government work. There's a short corner, a tall corner opposite, and a clear diagonal height gradient.
You can see how the Air Force method gets results in less time if you don't care about perfection. You can also see how to get the perfection effectively. You already know that the very shortest and very longest men are in two corners. The second-shortest might be behind or beside the shortest, the third shortest might be behind or beside him. In general, someone's height rank is also his maximum possible Manhattan distance from the short corner.
Looking back at the graph analogy, the eight nodes to present each round are eight of those with the currently most common length of longest inbound path. The length of the longest inbound path also represents the node's minimum possible sorted rank.
You'll use a lot of CPU following this plan, but you will make the best possible use of your human resources.
Upvotes: 8
Reputation: 464
The questions raises more questions really.
Are we talking a single human performing the comparisons? It's a very different challenge if you are talking a group of humans trying to arrange objects in order.
What about the questions of trust and error? Not everyone can be trusted or to get everything right - certain sorts would go catastrophically wrong if at any given point you provided the wrong answer to a single comparison.
What about subjectivity? "Rank these pictures in order of cuteness". Once you get to this point, it could get really complex. As someone else mentions, something like "hot or not" is the simplest conceptually, but isn't very efficient. At it's most complex, I'd say that google is a way of sorting objects into an order, where the search engine is inferring the comparisons made by humans.
Upvotes: 1
Reputation: 66612
From an assignment I once did on this very subject ...
The comparison counts are for various sorting algorithms operating on data in a random order
Size QkSort HpSort MrgSort ModQk InsrtSort
2500 31388 48792 25105 27646 1554230
5000 67818 107632 55216 65706 6082243
10000 153838 235641 120394 141623 25430257
20000 320535 510824 260995 300319 100361684
40000 759202 1101835 561676 685937
80000 1561245 2363171 1203335 1438017
160000 3295500 5045861 2567554 3047186
These comparison counts are for various sorting algorithms operating on data that is started 'nearly sorted'. Amongst other things it shows a the pathological case of quicksort.
Size QkSort HpSort MrgSort ModQk InsrtSort
2500 72029 46428 16001 70618 76050
5000 181370 102934 34503 190391 3016042
10000 383228 226223 74006 303128 12793735
20000 940771 491648 158015 744557 50456526
40000 2208720 1065689 336031 1634659
80000 4669465 2289350 712062 3820384
160000 11748287 4878598 1504127 10173850
From this we can see that merge sort is the best by number of comparisons.
I can't remember what the modifications to the quick sort algorithm were, but I believe it was something that used insertion sorts once the individual chunks got down to a certain size. This sort of thing is commonly done to optimise quicksort.
You might also want to look up Tadao Takaoka's 'Minimal Merge Sort', which is a more efficient version of the merge sort.
Upvotes: 5
Reputation: 27478
Merge sort is definately the way to go here as you can use a Map/Reduce type algorithm to have several humans doing the comparisons in parallel.
Quicksort is essentially a single threaded sort algorithm.
You could also tweak the merge sort algorithm so that instead of comparing two objects you present your human with a list of say five items and ask him or her to rank them.
Another possibility would be to use a ranking system as used by the famous "Hot or Not" web site. This requires many many more comparisons, but, the comparisons can happen in any sequence and in parallel, this would work faster than a classic sort provided you have enough huminoids at your disposal.
Upvotes: 1
Reputation: 2554
People are really good at ordering 5-10 things from best to worst and come up with more consistent results when doing so. I think trying to apply a classical sorting algo might not work here because of the typically human multi-compare approach.
I'd argue that you should have a round robin type approach and try to bucket things into their most consistent groups each time. Each iteration would only make the result more certain.
It'd be interesting to write too :)
Upvotes: 3
Reputation: 36977
You should consider that humans might make non-transitive comparisons, e.g. they favor A over B, B over C but also C over A. So when choosing your sort algorithm, make sure it doesn't completely break when that happens.
Upvotes: 3
Reputation: 104168
Here is a comparison of algorithms. The two better candidates are Quick Sort and Merge Sort. Quick Sort is in general better, but has a worse worst case performance.
Upvotes: 1
Reputation: 6119
The best one would be the merge sort
The minimum run time is n*log(n) [Base 2] The way it is implemented is
If the list is of length 0 or 1, then it is already sorted.
Otherwise:
Divide the unsorted list into two sublists of about half the size.
Sort each sublist recursively by re-applying merge sort.
Merge the two sublists back into one sorted list.
Upvotes: 0
Reputation: 22922
Pigeon hole sorting is order N and works well with humans if the data can be pigeon holed. A good example would be counting votes in an election.
Upvotes: 4
Reputation: 1499950
I don't think you're likely to get a better answer than the Wikipedia page on sorting.
Summary:
If humans are doing the comparisons, are they also doing the sorting? Do you have a fixed data structure you need to use, or could you effectively create a copy using a balanced binary tree insertion sort? What are the storage requirements?
Upvotes: 1