amcnabb
amcnabb

Reputation: 2161

What is the best way to compute the trace of a matrix product in numpy?

If I have numpy arrays A and B, then I can compute the trace of their matrix product with:

tr = numpy.linalg.trace(A.dot(B))

However, the matrix multiplication A.dot(B) unnecessarily computes all of the off-diagonal entries in the matrix product, when only the diagonal elements are used in the trace. Instead, I could do something like:

tr = 0.0
for i in range(n):
    tr += A[i, :].dot(B[:, i])

but this performs the loop in Python code and isn't as obvious as numpy.linalg.trace.

Is there a better way to compute the trace of a matrix product of numpy arrays? What is the fastest or most idiomatic way to do this?

Upvotes: 18

Views: 13604

Answers (3)

wflynny
wflynny

Reputation: 18521

From wikipedia you can calculate the trace using the hadamard product (element-wise multiplication):

# Tr(A.B)
tr = (A*B.T).sum()

I think this takes less computation than doing numpy.trace(A.dot(B)).

Edit:

Ran some timers. This way is much faster than using numpy.trace.

In [37]: timeit("np.trace(A.dot(B))", setup="""import numpy as np;
A, B = np.random.rand(1000,1000), np.random.rand(1000,1000)""", number=100)
Out[38]: 8.6434469223022461

In [39]: timeit("(A*B.T).sum()", setup="""import numpy as np;
A, B = np.random.rand(1000,1000), np.random.rand(1000,1000)""", number=100)
Out[40]: 0.5516049861907959

Upvotes: 10

Hugh Perkins
Hugh Perkins

Reputation: 8592

Note that one slight variant is to take the dot product of the vectorized matrices. In python, vectorization is done using .flatten('F'). It's slightly slower than taking the sum of the Hadamard product, on my computer, so it's a worse solution than wflynny's , but I think it's kind of interesting, since it can be more intuitive, in some situations, in my opinion. For example, personally I find that for the matrix normal distribution, the vectorized solution is easier for me to understand.

Speed comparison, on my system:

import numpy as np
import time

N = 1000

np.random.seed(123)
A = np.random.randn(N, N)
B = np.random.randn(N, N)

tart = time.time()
for i in range(10):
    C = np.trace(A.dot(B))
print(time.time() - start, C)

start = time.time()
for i in range(10):
    C = A.flatten('F').dot(B.T.flatten('F'))
print(time.time() - start, C)

start = time.time()
for i in range(10):
    C = (A.T * B).sum()
print(time.time() - start, C)

start = time.time()
for i in range(10):
    C = (A * B.T).sum()
print(time.time() - start, C)

Result:

6.246593236923218 -629.370798672
0.06539678573608398 -629.370798672
0.057890892028808594 -629.370798672
0.05709719657897949 -629.370798672

Upvotes: 0

Jaime
Jaime

Reputation: 67427

You can improve on @Bill's solution by reducing intermediate storage to the diagonal elements only:

from numpy.core.umath_tests import inner1d

m, n = 1000, 500

a = np.random.rand(m, n)
b = np.random.rand(n, m)

# They all should give the same result
print np.trace(a.dot(b))
print np.sum(a*b.T)
print np.sum(inner1d(a, b.T))

%timeit np.trace(a.dot(b))
10 loops, best of 3: 34.7 ms per loop

%timeit np.sum(a*b.T)
100 loops, best of 3: 4.85 ms per loop

%timeit np.sum(inner1d(a, b.T))
1000 loops, best of 3: 1.83 ms per loop

Another option is to use np.einsum and have no explicit intermediate storage at all:

# Will print the same as the others:
print np.einsum('ij,ji->', a, b)

On my system it runs slightly slower than using inner1d, but it may not hold for all systems, see this question:

%timeit np.einsum('ij,ji->', a, b)
100 loops, best of 3: 1.91 ms per loop

Upvotes: 15

Related Questions