Reputation: 25478
If X is a NumPy matrix
object, why does np.trace(X)
return a scalar (as expected) but X.trace()
return a 1x1
matrix
object?
>>> X = np.matrix([[1, 2], [3, 4]])
>>> np.trace(X)
5
>>> X.trace()
matrix([[5]]) # Why not just 5, which would be more useful?
I'm using NumPy 1.7.1, but don't see anything in the release notes of 1.8 to suggest anything's changed.
Upvotes: 3
Views: 2029
Reputation: 231325
Because X.trace
is coded that way! The matrix
documentation says:
A matrix is a specialized 2-D array that retains its 2-D nature through operations.
np.trace
is coded as (using ndarray.trace
):
return asarray(a).trace(offset, axis1, axis2, dtype, out)
It's harder to follow how the matrix trace is evaluated. But looking at https://github.com/numpy/numpy/blob/master/numpy/matrixlib/defmatrix.py
I suspect it is equivalent to:
np.asmatrix(X.A.trace())
In that same file, sum
is defined as:
return N.ndarray.sum(self, axis, dtype, out, keepdims=True)._collapse(axis)
mean
, prod
etc do the same. _collapse
returns a scalar if axis
is None
. There isn't an explicit definition for a matrix trace
, so it probably uses __array_finalize__
. In other words, trace
returns the default matrix
type.
Several constructs that return the scalar are:
X.A.trace()
X.diagonal().sum()
X.trace()._collapse(None)
Upvotes: 2
Reputation: 13539
def __array_finalize__(self, obj):
self._getitem = False
if (isinstance(obj, matrix) and obj._getitem): return
ndim = self.ndim
if (ndim == 2):
return
if (ndim > 2):
newshape = tuple([x for x in self.shape if x > 1])
ndim = len(newshape)
if ndim == 2:
self.shape = newshape
return
elif (ndim > 2):
raise ValueError("shape too large to be a matrix.")
else:
newshape = self.shape
if ndim == 0:
self.shape = (1, 1)
elif ndim == 1:
self.shape = (1, newshape[0])
return
This is from the matrix definition, subclassing ndarray. The trace function is not changed so it is actually the same function getting called.
This function is getting called every time a matrix object is created. The problem is that if ndims is less than 2, it is forced to be larger.
Then here comes some educated guess work, which i think should be true, but i'm not familiar enough with numpy codebase to figure it out exactly.
both trace functions, will keep the result as an array object (subclassed or not). If it's a single value, it will return that single value, or else it returns the array object.
Since the result is kept as a matrix object, it will be forced to be two dimensional by the function above here. And because of this, it will not be returned as a single value, but as the matrix object.
This conclusion is further backed up by editing the _array_finalize__
function like this:
def __array_finalize__(self, obj):
self._getitem = False
if (isinstance(obj, matrix) and obj._getitem): return
ndim = self.ndim
if (ndim == 2):
return
if (ndim > 2):
newshape = tuple([x for x in self.shape if x > 1])
ndim = len(newshape)
if ndim == 2:
self.shape = newshape
return
elif (ndim > 2):
raise ValueError("shape too large to be a matrix.")
else:
newshape = self.shape
return
if ndim == 0:
self.shape = (1, 1)
elif ndim == 1:
self.shape = (1, newshape[0])
return
notice the new return
before the last if-else check. Now the result of X.trace() is a single value.
THIS IS NOT A FIX, revert the change if you try this yourself.
They have good reasons for doing this
np.trace
does not have this problems since it convert's it to an array object directly.
The code for np.trace
is (without the docstring):
def trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None):
return asarray(a).trace(offset, axis1, axis2, dtype, out)
From the docstring of asarray
Array interpretation of
a
. No copy is performed if the input is already an ndarray. Ifa
is a subclass of ndarray, a base class ndarray is returned.
Upvotes: 2