Reputation:
if I use pandas.cut
to generate bins labels like [0.3, 0.5), ...
, how can I sort the dataframe according to these bins in ascending order? E.g. [-0.4, -0.2)
should come before [-0.2, 0.0)
, etc. Example:
df = pandas.DataFrame({"a": np.random.randn(10)})
# bin according to cut
df["bins"] = pandas.cut(df.a, np.linspace(-2,2,6))
Now how can you sort df according to the labels generated by cut
(the df["bins"]
column)?
Upvotes: 4
Views: 4146
Reputation: 394159
If you sort df by column 'a' first then you don't need to sort the 'bins' column
import pandas as pd
import numpy as np
df = pd.DataFrame({"a": np.random.randn(10)})
# for versions older than 0.17.0
df.sort(by=['a'],inplace=True)
# if running a newer version 0.17.0 or newer then you need
df.sort_values(by=['a'],inplace=True)
# bin according to cut
df["bins"] = pd.cut(df.a, np.linspace(-2,2,6))
df
Out[37]:
a bins
6 -1.273335 (-2, -1.2]
7 -0.604780 (-1.2, -0.4]
1 -0.467994 (-1.2, -0.4]
8 0.028114 (-0.4, 0.4]
9 0.032250 (-0.4, 0.4]
3 0.138368 (-0.4, 0.4]
0 0.541577 (0.4, 1.2]
5 0.838290 (0.4, 1.2]
2 1.171387 (0.4, 1.2]
4 1.770752 (1.2, 2]
Upvotes: 8
Reputation: 65
Since pandas .17, the new way to sort is to use sort_values. The preferred solutions becomes:
import pandas as pd
import numpy as np
df = pd.DataFrame({"a": np.random.randn(10)})
df.sort_values('a',inplace=True)
# bin according to cut
df["bins"] = pd.cut(df.a, np.linspace(-2,2,6))
df
Upvotes: 1