Reputation: 1062
I want to use a MultiIndex with dates as one of the hierarchical index types. I also want to save the DataFrame as a frame_table, so that I can select subsets from disk without loading the whole thing. I currently get an error: TypeError: [date] is not implemented as a table column
and I was wondering if I am using the multiindex incorrectly, or this is indeed a limitation of Pandas. Thanks!
import pandas as pd, numpy, datetime
print pd.__version__ #-> 0.13.0rc1
idx1 = pd.MultiIndex.from_tuples([(datetime.date(2013,12,d), s, t) for d in range(1,3) for s in range(2) for t in range(3)])
df1 = pd.DataFrame(data=numpy.zeros((len(idx1),2)), columns=['a','b'], index=idx1)
with pd.get_store('test1.h5') as f:
f.put('trials',df1) #-> OK
with pd.get_store('test2.h5') as f:
f.put('trials',df1,data_colums=True,format='t') #-> TypeError: [date] is not implemented as a table column
Upvotes: 2
Views: 1169
Reputation: 128918
Use datetime.datetime
as these types can be stored efficiently. Docs are here for an example of storing a multi-index frame in a HDFStore
.
When storing a multi-index, you MUST specify names for the levels (HDFStore
currently won't warn you if you try to store it ATM; this will be addressed in the next release).
In [20]: idx1 = pd.MultiIndex.from_tuples([(datetime.datetime(2013,12,d), s, t) for d in range(1,3) for s in range(2) for t in range(3)],names=['date','s','t'])
In [21]: df1 = pd.DataFrame(data=numpy.zeros((len(idx1),2)), columns=['a','b'], index=idx1)
You need to store as a table
(put
stores in Fixed
format, unless append
is specified).
In [22]: df1.to_hdf('test.h5','df',mode='w',format='table')
In [23]: pd.read_hdf('test.h5','df')
Out[23]:
a b
date s t
2013-12-01 0 0 0 0
1 0 0
2 0 0
1 0 0 0
1 0 0
2 0 0
2013-12-02 0 0 0 0
1 0 0
2 0 0
1 0 0 0
1 0 0
2 0 0
[12 rows x 2 columns]
Sample selection
In [8]: pd.read_hdf('test.h5','df',where='date=20131202')
Out[8]:
a b
date s t
2013-12-02 0 0 0 0
1 0 0
2 0 0
1 0 0 0
1 0 0
2 0 0
[6 rows x 2 columns]
Upvotes: 2