Reputation: 21476
Again I'm requesting comments about how a given design should be implemented in Haskell. Thanks in advance to everyone providing helpful comments. Also I hope this could be an aid to other Haskell novices like me, having a practical sample code.
This time, we have a polymorphic function doSampling
(in module Samples) that takes a generic function f and
a list of reals (indexes) and returns a Samples
(indexes, values=f(indexes)). We want implement doSampling
only once, as it doesn't matter if is f is a Polynomial
or a Sinus
. For that,
we have introduced an interface Function, and have Polynomial and Sinus types implement it.
The following is the design being implemented:
There is a debate on the Function
interface (class in Haskell). It has been suggested it is not actually necessary, as doSampling
may take a "nude" function (Double -> Double)
instead.
But, how to do it, if you need some extra state within the nude function (coeffs for a polynomial, amp+freq+phase for a sinus?
Very good answers by kosmikus and by Chris Taylor. Thanks. A key idea in both: have
doSampling :: (Double -> Double) -> [Double] -> Samples
This is: it takes a function (Double -> Double)
(instead of Function
) and list and returns samples.
My intention was to keep the state of Polynomial
s and Sinus
es. That is not regarded in Chris answer, but it is in kosmikus'. On the other hand, the weak point in kosmikus version could be how to extend its Function
definition if you don't have access to the source code.
I would also point out:
Chris' idea of encapsulating a polynomial or a sinus into a function (Double -> Double)
by means of a factory function mkPolynomial
or mkSinus
that generates (using currying?) the desired function taking the apropriate parameters. (Although you can't consult the parameters later).
kosmikous' idea of using value
to transform (also using currying?) a Function
into a (Double -> Double)
Both answers are worth reading as they have other little Haskell tricks to reduce and simplify code.
Chris answers does not support keeping the state of a Polynomial or of a Sinus
kosmikus answers is not extensible: adding new type of functions (Cosinus ...)
my answer (being verbose) does overcome the previous downsides, and it would allow (this not necessary for the problem) impose Function types to have more associated-functions apart of value
(in the sense of how an java-interfaces work).
main (usage)
import Polynomial
import Sinus
import Function
import Samples
-- ...............................................................
p1 = Polynomial [1, 0, 0.5] -- p(x) = 1 + 0.5x^2
s1 = Sinus 2 0.5 3 -- f(x) = 2 sin(0.5x + 3)
-- ...............................................................
-- sample p1 from 0 to 5
m1 = doSampling p1 [0, 0.5 .. 5]
m2 = doSampling s1 [0, 0.5 .. 5]
-- ...............................................................
-- main
-- ...............................................................
main = do
putStrLn "Hello"
print $ value p1 2
print $ value s1 (pi/2)
print $ pairs m1
print $ pairs m2
Function
module Function where
-- ...............................................................
-- "class type" : the types belonging to this family of types
-- must implement the following functions:
-- + value : takes a function and a real and returns a real
-- ...............................................................
class Function f where
value :: f -> Double -> Double
-- f is a type variable, this is:
-- f is a type of the Function "family" not an actual function
Samples
module Samples where
import Function
-- ...............................................................
-- Samples: new data type
-- This is the constructor and says it requieres
-- two list, one for the indexes (xs values) and another
-- for the values ( ys = f (xs) )
-- this constructor should not be used, instead use
-- the "factory" function: new_Samples that performs some checks
-- ...............................................................
data Samples = Samples { indexes :: [Double] , values :: [Double] }
deriving (Show)
-- ...............................................................
-- constructor: it checks lists are equal size, and indexes are sorted
new_Samples :: [Double] -> [Double] -> Samples
new_Samples ind val
| (length ind) /= (length val) = samplesVoid
| not $ isSorted ind = samplesVoid
| otherwise = Samples ind val
-- ...............................................................
-- sample a funcion
-- it takes a funcion f and a list of indexes and returns
-- a Samples calculating the values array as f(indexes)
doSampling :: (Function f) => f -> [Double] -> Samples
doSampling f ind = new_Samples ind vals
where
vals = [ value f x | x <- ind ]
-- ...............................................................
-- used as "error" in the construction
samplesVoid = Samples [] []
-- ...............................................................
size :: Samples -> Int
size samples = length (indexes samples)
-- ...............................................................
-- utility function to get a pair (index,value) out of a Samples
pairs :: Samples -> [(Double, Double)]
pairs samples = pairs' (indexes samples) (values samples)
pairs' :: [Double] -> [Double] -> [(Double, Double)]
pairs' [] [] = []
pairs' [i] [v] = [(i,v)]
pairs' (i:is) (v:vs) = (i,v) : pairs' is vs
-- ...............................................................
-- to check whether a list is sorted (<)
isSorted :: (Ord t) => [t] -> Bool
isSorted [] = True
isSorted [e] = True
isSorted (e1:(e2:tail))
| e1 < e2 = isSorted (e2:tail)
| otherwise = False
Sinus
module Sinus where
-- ...............................................................
import Function
-- ...............................................................
-- Sinus: new data type
-- This is the constructor and says it requieres
-- a three reals
-- ...............................................................
data Sinus = Sinus { amplitude :: Double, frequency :: Double, phase :: Double }
deriving (Show)
-- ...............................................................
-- we say that a Sinus is a Function (member of the class Function)
-- and then, how value is implemented
instance Function Sinus where
value s x = (amplitude s) * sin ( (frequency s)*x + (phase s))
Polynomial
module Polynomial where
-- ...............................................................
import Function
-- ...............................................................
-- Polynomial: new data type
-- This is the constructor and says it requieres
-- a list of coefficients
-- ...............................................................
data Polynomial = Polynomial { coeffs :: [Double] }
deriving (Show)
-- ...............................................................
degree :: Polynomial -> Int
degree p = length (coeffs p) - 1
-- ...............................................................
-- we say that a Polynomial is a Function (member of the class Function)
-- and then, how value is implemented
instance Function Polynomial where
value p x = value' (coeffs p) x 1
-- list of coeffs -> x -> pw (power of x) -> Double
value' :: [Double] -> Double -> Double -> Double
value' (c:[]) _ pw = c * pw
value' (c:cs) x pw = (c * pw) + (value' cs x x*pw)
Upvotes: 1
Views: 446
Reputation: 19637
[Expanded my comment on request.]
I'd probably do this roughly as follows:
import Data.Functor
-- Use a datatype rather than a class. Yes, this makes it harder to
-- add new types of functions later, and in turn easier to define new
-- operations. ("expression problem")
data Function =
Sinus { amplitude :: Double, frequency :: Double, phase :: Double }
| Polynomial { coeffs :: [Double] }
deriving (Show)
-- Interpreting a Function as an actual function.
value :: Function -> (Double -> Double)
value (Sinus amp freq ph) x = amp * sin (freq * x + ph)
value (Polynomial cs) x = value' cs x
-- Rewrite value' to not require non-empty lists. This can also be
-- nicely written as a fold.
value' :: [Double] -> Double -> Double
value' [] _ = 0
value' (c:cs) x = c + x * value' cs x
data Samples = Samples { indexes :: [Double] , values :: [Double] }
deriving (Show)
-- Use Maybe to detect error conditions, instead of strange values
-- such as voidSamples.
newSamples :: [Double] -> [Double] -> Maybe Samples
newSamples ind val
| length ind /= length val = Nothing
| not $ isSorted ind = Nothing
| otherwise = Just (Samples ind val)
doSampling :: (Double -> Double) -> [Double] -> Maybe Samples
doSampling f ind = newSamples ind (map f ind)
isSorted :: (Ord t) => [t] -> Bool
isSorted [] = True
isSorted [e] = True
isSorted (e1:e2:es)
| e1 < e2 = isSorted (e2:es)
| otherwise = False
-- This is just zip.
pairs :: Samples -> [(Double, Double)]
pairs (Samples idxs vals) = zip idxs vals
p1 = Polynomial [1, 0, 0.5] -- p(x) = 1 + 0.5x^2
s1 = Sinus 2 0.5 3 -- f(x) = 2 sin(0.5x + 3)
m1 = doSampling (value p1) [0, 0.5 .. 5]
m2 = doSampling (value s1) [0, 0.5 .. 5]
-- The <$> maps over a Maybe.
main = do
putStrLn "Hello"
print $ value p1 2
print $ value s1 (pi/2)
print $ pairs <$> m1
print $ pairs <$> m2
Upvotes: 3
Reputation: 47382
You certainly don't need the Function
class. All this heavyweight class, instance, member variable fluff is one of the things that Haskell is designed to avoid. Pure functions can be much more flexible.
Here's a simple way of doing what you want.
type Sample = ([Double], [Double])
newSample xs vs
| isSorted xs && length xs == length vs = (indices, values)
| otherwise = ([], [])
pairs = uncurry zip
doSampling :: (Double -> Double) -> [Double] -> Sample
doSampling f xs = newSample xs (map f xs)
mkPolynomial :: [Double] -> (Double -> Double)
mkPolynomial coefs x = go coefs
where
go [] = 0
go (c:cs) = c + x * go cs
mkSinus :: Double -> Double -> Double -> (Double -> Double)
mkSinus amp freq phase x = amp * sin (freq * x + phase)
p1 = mkPolynomial [1, 0, 0.5] -- 1 + 0.5x^2
s1 = mkSinus 2 0.5 3 -- 2 sin(0.5x + 3)
m1 = doSampling p1 [0, 0.5 .. 5]
m2 = doSampling s1 [0, 0.5 .. 5]
main :: IO ()
main = do
print $ p1 2
print $ s1 (pi/2)
print $ pairs m1
print $ pairs m2
Upvotes: 12