Everaldo Aguiar
Everaldo Aguiar

Reputation: 4136

Add x and y labels to a pandas plot

Suppose I have the following code that plots something very simple using pandas:

import pandas as pd
values = [[1, 2], [2, 5]]
df2 = pd.DataFrame(values, columns=['Type A', 'Type B'], 
                   index=['Index 1', 'Index 2'])
df2.plot(lw=2, colormap='jet', marker='.', markersize=10, 
         title='Video streaming dropout by category')

Output

How do I easily set x and y-labels while preserving my ability to use specific colormaps? I noticed that the plot() wrapper for pandas DataFrames doesn't take any parameters specific for that.

Upvotes: 278

Views: 592694

Answers (8)

Mykola Zotko
Mykola Zotko

Reputation: 17911

In Pandas version 1.10 you can use parameters xlabel and ylabel in the method plot:

df.plot(xlabel='X Label', ylabel='Y Label', title='Plot Title')

enter image description here

Upvotes: 36

Dror Hilman
Dror Hilman

Reputation: 7457

what about ...

import pandas as pd
import matplotlib.pyplot as plt

values = [[1,2], [2,5]]

df2 = pd.DataFrame(values, columns=['Type A', 'Type B'], index=['Index 1','Index 2'])

(df2.plot(lw=2,
          colormap='jet',
          marker='.',
          markersize=10,
          title='Video streaming dropout by category')
    .set(xlabel='x axis',
         ylabel='y axis'))

plt.show()

Upvotes: 14

TomAugspurger
TomAugspurger

Reputation: 28956

The df.plot() function returns a matplotlib.axes.AxesSubplot object. You can set the labels on that object.

ax = df2.plot(lw=2, colormap='jet', marker='.', markersize=10, title='Video streaming dropout by category')
ax.set_xlabel("x label")
ax.set_ylabel("y label")

enter image description here

Or, more succinctly: ax.set(xlabel="x label", ylabel="y label").

Alternatively, the index x-axis label is automatically set to the Index name, if it has one. so df2.index.name = 'x label' would work too.

Upvotes: 446

Dr. Arslan
Dr. Arslan

Reputation: 1314

pandas uses matplotlib for basic dataframe plots. So, if you are using pandas for basic plot you can use matplotlib for plot customization. However, I propose an alternative method here using seaborn which allows more customization of the plot while not going into the basic level of matplotlib.

Working Code:

import pandas as pd
import seaborn as sns
values = [[1, 2], [2, 5]]
df2 = pd.DataFrame(values, columns=['Type A', 'Type B'], 
                   index=['Index 1', 'Index 2'])
ax= sns.lineplot(data=df2, markers= True)
ax.set(xlabel='xlabel', ylabel='ylabel', title='Video streaming dropout by category') 

enter image description here

Upvotes: 4

jesukumar
jesukumar

Reputation: 1149

You can use do it like this:

import matplotlib.pyplot as plt 
import pandas as pd

plt.figure()
values = [[1, 2], [2, 5]]
df2 = pd.DataFrame(values, columns=['Type A', 'Type B'], 
                   index=['Index 1', 'Index 2'])
df2.plot(lw=2, colormap='jet', marker='.', markersize=10,
         title='Video streaming dropout by category')
plt.xlabel('xlabel')
plt.ylabel('ylabel')
plt.show()

Obviously you have to replace the strings 'xlabel' and 'ylabel' with what you want them to be.

Upvotes: 64

shoyer
shoyer

Reputation: 9613

If you label the columns and index of your DataFrame, pandas will automatically supply appropriate labels:

import pandas as pd
values = [[1, 2], [2, 5]]
df = pd.DataFrame(values, columns=['Type A', 'Type B'], 
                  index=['Index 1', 'Index 2'])
df.columns.name = 'Type'
df.index.name = 'Index'
df.plot(lw=2, colormap='jet', marker='.', markersize=10, 
        title='Video streaming dropout by category')

enter image description here

In this case, you'll still need to supply y-labels manually (e.g., via plt.ylabel as shown in the other answers).

Upvotes: 33

Serenity
Serenity

Reputation: 36695

It is possible to set both labels together with axis.set function. Look for the example:

import pandas as pd
import matplotlib.pyplot as plt
values = [[1,2], [2,5]]
df2 = pd.DataFrame(values, columns=['Type A', 'Type B'], index=['Index 1','Index 2'])
ax = df2.plot(lw=2,colormap='jet',marker='.',markersize=10,title='Video streaming dropout by category')
# set labels for both axes
ax.set(xlabel='x axis', ylabel='y axis')
plt.show()

enter image description here

Upvotes: 31

Selah
Selah

Reputation: 8074

For cases where you use pandas.DataFrame.hist:

plt = df.Column_A.hist(bins=10)

Note that you get an ARRAY of plots, rather than a plot. Thus to set the x label you will need to do something like this

plt[0][0].set_xlabel("column A")

Upvotes: 16

Related Questions