Reputation: 93
I'm using R. My dataset has about 40 different Variables/Vektors and each has about 80 entries. I'm trying to find significant correlations, that means I want to pick one variable and let R calculate all the correlations of that variable to the other 39 variables.
I tried to do this by using a linear modell with one explaining variable that means: Y=a*X+b. Then the lm() command gives me an estimator for a and p-value of that estimator for a. I would then go on and use one of the other variables I have for X and try again until I find a p-value thats really small.
I'm sure this is a common problem, is there some sort of package or function that can try all these possibilities (Brute force),show them and then maybe even sorts them by p-value?
Upvotes: 9
Views: 26920
Reputation: 19037
In order to print a list of the significant correlations (p < 0.05), you can use the following.
Using the same demo data from @Richie:
m <- 40
n <- 80
the_data <- as.data.frame(replicate(m, runif(n), simplify = FALSE))
colnames(the_data) <- c("y", paste0("x", seq_len(m - 1)))
Install Hmisc
install.packages("Hmisc")
Import library and find the correlations (@Carlos)
library(Hmisc)
correlations <- rcorr(as.matrix(the_data))
Loop over the values printing the significant correlations
for (i in 1:m){
for (j in 1:m){
if ( !is.na(correlations$P[i,j])){
if ( correlations$P[i,j] < 0.05 ) {
print(paste(rownames(correlations$P)[i], "-" , colnames(correlations$P)[j], ": ", correlations$P[i,j]))
}
}
}
}
Warning
You should not use this for drawing any serious conclusion; only useful for some exploratory analysis and formulate hypothesis. If you run enough tests, you increase the probability of finding some significant p-values by random chance: https://www.xkcd.com/882/. There are statistical methods that are more suitable for this and that do do some adjustments to compensate for running multiple tests, e.g. https://en.wikipedia.org/wiki/Bonferroni_correction.
Upvotes: 6
Reputation: 5142
One option is to run a correlation matrix:
cor_result=cor(data)
write.csv(cor_result, file="cor_result.csv")
This correlates all the variables in the file against each other and outputs a matrix.
Upvotes: 0
Reputation: 11597
You can use the function rcorr
from the package Hmisc
.
Using the same demo data from Richie:
m <- 40
n <- 80
the_data <- as.data.frame(replicate(m, runif(n), simplify = FALSE))
colnames(the_data) <- c("y", paste0("x", seq_len(m - 1)))
Then:
library(Hmisc)
correlations <- rcorr(as.matrix(the_data))
To access the p-values:
correlations$P
To visualize you can use the package corrgram
library(corrgram)
corrgram(the_data)
Which will produce:
Upvotes: 6
Reputation: 121077
Here's some sample data for reproducibility.
m <- 40
n <- 80
the_data <- as.data.frame(replicate(m, runif(n), simplify = FALSE))
colnames(the_data) <- c("y", paste0("x", seq_len(m - 1)))
You can calculate the correlation between two columns using cor
. This code loops over all columns except the first one (which contains our response), and calculates the correlation between that column and the first column.
correlations <- vapply(
the_data[, -1],
function(x)
{
cor(the_data[, 1], x)
},
numeric(1)
)
You can then find the column with the largest magnitude of correlation with y
using:
correlations[which.max(abs(correlations))]
So knowing which variables are correlated which which other variables can be interesting, but please don't draw any big conclusions from this knowledge. You need to have a proper think about what you are trying to understand, and which techniques you need to use. The folks over at Cross Validated can help.
Upvotes: 4
Reputation: 17617
If you are trying to predict y using only one variable than you have to take the one that is mainly correlated with y.
To do this just use the command which.max(abs(cor(x,y)))
. If you want to use more than one variable in your model then you have to consider something like the lasso estimator
Upvotes: 0