Reputation: 85
I have df like this with 15 numeric column (values are random, not my real data):
Val(numeric): val.2: Val.3 .... Val.15
1.698 1.689 5.478 5.68
4.98 0.65 69.47 4.78
0.123 3 12 .698 6.98
-----------------------------------------------------------
0.047 65.98 123.47 1.547
I calculated the correlation between each variable:
val val.2 ... val.15
val 1 0.32 0.1256
val.2 0.9 1 0.125
...
val.15 0.36 0.12 1
But I want to do correlation Test ( cor.test() ) between each column.
Is there a way to do it automatically instead of doing a lot of tests like:
cor.test(df$val, df$val.2, method = 'spearman')
cor.test(df$val, df$val.3, method = 'spearman')
...... etc.
cor.test(df$val.14, df$val.15, method = 'spearman')
Upvotes: 0
Views: 89
Reputation: 49640
Any time you want to do something on all pairs (or other combinations), the combn
function is one approach. It will create the pairs and optionally run a function on each pair:
> combn(1:4, 2, FUN=function(x) cor.test(iris[,x[1]], iris[,x[2]])$p.value)
[1] 1.518983e-01 0.000000e+00 0.000000e+00
[4] 4.513314e-08 4.073229e-06 0.000000e+00
> p.adjust(.Last.value)
[1] 1.518983e-01 0.000000e+00 0.000000e+00
[4] 1.353994e-07 8.146457e-06 0.000000e+00
Upvotes: 0
Reputation: 887193
You can try
library(Hmisc)
rcorr(as.matrix(df), type='spearman')$P
Upvotes: 1