Reputation: 463
I have a DataFrame from which I want to normalize some arbitrary columns using another arbitrary column:
import itertools as it
import numpy as np
import pandas as pd
header = tuple(['h_seqNum', 'h_stamp', 'user_id'])
joints = tuple(['head', 'neck', 'torso'])
attribs = tuple(['pos_x','pos_y','pos_z'])
all_columns = it.izip(*it.product(joints, attribs))
multiind_first = list(it.chain(['header']*len(header), all_columns.next(), ['pose',]))
multiind_second = list(it.chain(header, all_columns.next(), ['pose',]))
df = pd.DataFrame(np.random.rand(65).reshape(5,13), columns = pd.MultiIndex.from_arrays([multiind_first, multiind_second], names=['joint', 'attrib']))
The resulting DataFrame is something like this one:
joint header head neck torso pose
attrib h_seqNum h_stamp user_id pos_x pos_y pos_z pos_x pos_y pos_z pos_x pos_y pos_z pose
0 0.681 0.059 0.607 0.093 0.504 0.975 0.317 0.739 0.129 0.759 0.254 0.814 1
1 0.914 0.420 0.305 0.242 0.700 0.180 0.324 0.171 0.477 0.943 0.877 0.069 0
2 0.522 0.395 0.118 0.739 0.653 0.326 0.947 0.517 0.036 0.647 0.079 0.227 0
3 0.475 0.815 0.792 0.208 0.472 0.427 0.213 0.544 0.440 0.033 0.636 0.527 2
4 0.767 0.774 0.983 0.646 0.949 0.947 0.402 0.015 0.913 0.734 0.192 0.032 0
I want to normalize all the columns (attrib) belonging to an arbitrary joint (eg. 'head') using another arbitrary joint (eg. 'torso'). For instance something like.
df['head'] = df['head'] - df['torso']
df['neck'] = df['neck'] - df['torso']
# Note that torso remains "unnormalized"
To do so I wrote a function:
def normalize_joints(df, from_joint):
joint_names = set(joints) - set([from_joint,])
for j in list(joint_names):
df[j] = df[j] - df[norm_name]
However, when I execute this function I get the following error:
normalize_joints(df, 'torso')
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-414-47f39f04716d> in <module>()
----> 1 normalize_joints(df, 'torso')
<ipython-input-407-cf13a67fabd8> in normalize_joints(df, from_joint)
2 joint_names = set(joints) - set([from_joint,])
3 for j in list(joint_names):
----> 4 df[j] = df[j] - df[from_joint]
/Library/Python/2.7/site-packages/pandas/core/frame.pyc in __setitem__(self, key, value)
2117 fill_value, limit, takeable=takeable)
2118
-> 2119 return frame
2120
2121 def _reindex_index(self, new_index, method, copy, level, fill_value=NA,
/Library/Python/2.7/site-packages/pandas/core/frame.pyc in _set_item(self, key, value)
2164 @Appender(_shared_docs['reindex_axis'] % _shared_doc_kwargs)
2165 def reindex_axis(self, labels, axis=0, method=None, level=None, copy=True,
-> 2166 limit=None, fill_value=np.nan):
2167 return super(DataFrame, self).reindex_axis(labels=labels, axis=axis,
2168 method=method, level=level,
/Library/Python/2.7/site-packages/pandas/core/generic.pyc in _set_item(self, key, value)
677
678 __bool__ = __nonzero__
--> 679
680 def bool(self):
681 """ Return the bool of a single element PandasObject
/Library/Python/2.7/site-packages/pandas/core/internals.pyc in set(self, item, value)
1768 def sp_index(self):
1769 return self.values.sp_index
-> 1770
1771 @property
1772 def kind(self):
/Library/Python/2.7/site-packages/pandas/core/internals.pyc in _reset_ref_locs(self)
1054 # see if we can align other
1055 if hasattr(other, 'reindex_axis'):
-> 1056 if align:
1057 axis = getattr(other, '_info_axis_number', 0)
1058 other = other.reindex_axis(self.items, axis=axis,
/Library/Python/2.7/site-packages/pandas/core/internals.pyc in _rebuild_ref_locs(self)
1062
1063 # make sure that we can broadcast
-> 1064 is_transposed = False
1065 if hasattr(other, 'ndim') and hasattr(values, 'ndim'):
1066 if values.ndim != other.ndim or values.shape == other.shape[::-1]:
AttributeError: _ref_locs
After several tries I have not been able to locate the source of my error. If I perform the operation
df['head'] - df['torso']
it returns me a DataFrame with the correct result. However, when I try to assign this DataFrame to df['head'] I get the error shown before.
Is it any way to perform this assignment?
Moreover, I was wondering if there are any better ways to perform the same normalization than the one I am trying. Perhaps using groupby and then and applying the normalize function to the selected DataFrame?
EDIT:
This error occurred with numpy 1.6 and pandas 0.12
After upgrading to numpy 1.8 and pandas 0.13 the following operation is valid:
df['head'] = df['head'] - df['torso']
Upvotes: 4
Views: 3108
Reputation: 463
I believe that I have found a rather simple solution:
def normalize(df, from_joint):
df.drop(['header', 'pose', from_joint], axis=1, level='joint').sub(df[from_joint], level=1)
df.update(normalize(df, 'torso'))
Upvotes: 2
Reputation: 17485
The problem is that your columns are instances of MultiIndex
try this:
def normalize_joints(df, from_joint):
joint_names = set(joints) - set([from_joint,])
for j in list(joint_names):
keys = [(j,c) for c in attribs]
df[keys] = df[j] - df[from_joint]
print df
normalize_joints(df, 'torso')
print df
Output:
joint header head neck torso pose
attrib h_seqNum h_stamp user_id pos_x pos_y pos_z pos_x pos_y pos_z pos_x pos_y pos_z pose
0 0.067366 0.957394 0.983969 0.602662 0.505270 0.990675 0.753841 0.598397 0.846479 0.757155 0.220009 0.328470 0.686525
1 0.806405 0.800388 0.302178 0.935559 0.180360 0.322767 0.230457 0.617555 0.602589 0.109482 0.181803 0.311266 0.929481
2 0.649677 0.237286 0.963088 0.370463 0.471590 0.489256 0.060383 0.070885 0.858312 0.306232 0.511731 0.257015 0.283287
3 0.054800 0.127925 0.099985 0.700160 0.211256 0.026782 0.820380 0.922593 0.600130 0.100745 0.418157 0.869735 0.597275
4 0.678372 0.334520 0.247894 0.616133 0.914610 0.229628 0.317488 0.224910 0.620222 0.952499 0.946568 0.539502 0.838473
joint header head neck torso pose
attrib h_seqNum h_stamp user_id pos_x pos_y pos_z pos_x pos_y pos_z pos_x pos_y pos_z pose
0 0.067366 0.957394 0.983969 -0.154493 0.285261 0.662205 -0.003314 0.378387 0.518009 0.757155 0.220009 0.328470 0.686525
1 0.806405 0.800388 0.302178 0.826077 -0.001443 0.011501 0.120975 0.435752 0.291322 0.109482 0.181803 0.311266 0.929481
2 0.649677 0.237286 0.963088 0.064231 -0.040141 0.232241 -0.245850 -0.440846 0.601297 0.306232 0.511731 0.257015 0.283287
3 0.054800 0.127925 0.099985 0.599414 -0.206900 -0.842953 0.719635 0.504436 -0.269605 0.100745 0.418157 0.869735 0.597275
4 0.678372 0.334520 0.247894 -0.336366 -0.031958 -0.309874 -0.635011 -0.721658 0.080719 0.952499 0.946568 0.539502 0.838473
Upvotes: 2