Jean-Luc
Jean-Luc

Reputation: 3613

Numpy/Scipy Solve simulataneous equations with integrals in them

I am trying to use numpy and scipy to solve the following two equations:

P(z) = sgn(-cos(np.pi*D1) + cos(5*z)) * sgn(-cos(np.pi*D2) + cos(6*z))

1. 0 = 2/2pi ∫ P(z,D1,D2) * cos(5z) dz + z/L

2. 0 = 2/2pi ∫ P(z,D1,D2) * cos(6z) dz - z/L

for D1 and D2 (integral limits are 0 -> 2pi).

My code is:

def equations(p, z):
    D1, D2 = p
    period = 2*np.pi

    P1 = lambda zz, D1, D2: \
            np.sign(-np.cos(np.pi*D1) + np.cos(6.*zz)) * \
            np.sign(-np.cos(np.pi*D2) + np.cos(5.*zz)) * \
            np.cos(6.*zz)
    P2 = lambda zz, D1, D2: \
            np.sign(-np.cos(np.pi*D1) + np.cos(6.*zz)) * \
            np.sign(-np.cos(np.pi*D2) + np.cos(5.*zz)) * \
            np.cos(5.*zz)

    eq1 = 2./period * integrate.quad(P1, 0., period, args=(D1,D2), epsabs=0.01)[0] + z
    eq2 = 2./period * integrate.quad(P2, 0., period, args=(D1,D2), epsabs=0.01)[0] - z
    return (eq1, eq2)


z = np.arange(0., 1000., 0.01)

N = int(len(z))

D1 = np.empty([N])
D2 = np.empty([N])
for i in range(N):
    D1[i], D2[i] = fsolve(equations, x0=(0.5, 0.5), args=z[i])

print D1, D2

Unfortunately, it does not seem to converge. I don't know much about numerical methods and was hoping someone could give me a hand.

Thank you.

P.S. I'm also trying the following which should be equivalent:

import numpy as np
from scipy.optimize import fsolve
from scipy import integrate
from scipy import signal

def equations(p, z):
    D1, D2 = p
    period = 2.*np.pi

    K12 = 1./L * z
    K32 = -1./L * z + 1.

    P1 = lambda zz, D1, D2: \
            signal.square(6.*zz, duty=D1) * \
            signal.square(5.*zz, duty=D2) * \
            np.cos(6.*zz)
    P2 = lambda zz, D1, D2: \
            signal.square(6.*zz, duty=D1) * \
            signal.square(5.*zz, duty=D2) * \
            np.cos(5.*zz)

    eq1 = 2./period * integrate.quad(P1, 0., period, args=(D1,D2))[0] + K12
    eq2 = 2./period * integrate.quad(P2, 0., period, args=(D1,D2))[0] - K32

    return (eq1, eq2)


h = 0.01
L = 10.
z = np.arange(0., L, h)

N = int(len(z))

D1 = np.empty([N])
D2 = np.empty([N])
for i in range(N):
    D1[i], D2[i] = fsolve(equations, x0=(0.5, 0.5), args=z[i])
    print
    print z[i]
    print ("%0.8f,%0.8f" % (D1[i], D2[i]))
    print

PSS: I implemented what you wrote (I think I understand it!), very nicely done. Thank you. Unfortunately, I really don't have much skill in this field and don't really know how to make a suitable guess, so I just guess 0.5 (I also added a small amount of noise to the initial guess to try and improve it). The result I'm getting have numerical errors it seems, and I'm not sure why, I was hoping you could point me in the right direction. So essentially, I did an FFT sweep (did an FFT for each dutycycle variation and looked at the frequency component at 5, which is shown below in the graph) and found that the linear part (z/L) is slightly jagged.

FFTsweep

PSSS: Thank you for that, I've noted some of the techniques you've suggested. I tried replicated your second graph as it seems very useful. To do this, I kept D1 (D2) fixed and swept D2 (D1), and I did this for various z values. fmin did not always find the correct minimum (it was dependent on the initial guess) so I swept the initial guess of fmin until I found the correct answer. I get a similar answer to you. (I think it's correct?)

Also, I would just like to say that you might like to give me your contact details, as this solution as a step in finding the solution to a problem I have (I'm a student doing research), and I will most certainly acknowledge you in any papers in which this code is used.

sweep

#!/usr/bin/env python

import numpy as np
from scipy.optimize import fsolve
from scipy import integrate
from scipy import optimize
from scipy import signal


######################################################
######################################################

altsigns = np.ones(50)
altsigns[1::2] = -1

def get_breaks(x, y, a, b):
    sa = np.arange(0, 2*a, 2)
    sb = np.arange(0, 2*b, 2)

    zx  = (( x + sa) % (2*a))*np.pi/a
    zx2 = ((-x + sa) % (2*a))*np.pi/a
    zy  = (( y + sb) % (2*b))*np.pi/b
    zy2 = ((-y + sb) % (2*b))*np.pi/b

    zi = np.r_[np.sort(np.hstack((zx, zx2, zy, zy2))), 2*np.pi]
    if zi[0]:
        zi = np.r_[0, zi]
    return zi

def integrals(x, y, a, b):
    zi = get_breaks(x % 1., y % 1., a, b)
    sins = np.vstack((np.sin(b*zi), np.sin(a*zi)))
    return (altsigns[:zi.size-1]*(sins[:,1:] - sins[:,:-1])).sum(1) / np.array((b, a))

def equation1(p, z, d2):
    D2 = d2

    D1 = p
    I1, _ = integrals(D1, D2, deltaK1, deltaK2)

    eq1 = 1. / np.pi * I1 + z
    return abs(eq1)

def equation2(p, z, d1):
    D1 = d1

    D2 = p
    _, I2 = integrals(D1, D2, deltaK1, deltaK2)

    eq2 = 1. / np.pi * I2 - z + 1
    return abs(eq2)

######################################################
######################################################

z = [0.2, 0.4, 0.6, 0.8, 1.0]#np.arange(0., 1., 0.1)
step = 0.05

deltaK1 = 5.
deltaK2 = 6.

f = open('data.dat', 'w')

D = np.arange(0.0, 1.0, step)
D1eq1 = np.empty([len(D)])
D2eq2 = np.empty([len(D)])
D1eq1Err = np.empty([len(D)])
D2eq2Err = np.empty([len(D)])
for n in z:
    for i in range(len(D)):
        # Fix D2 and solve for D1.
        for guessD1 in np.arange(0.,1.,0.1):
            D2 = D
            tempD1 = optimize.fmin(equation1, guessD1, args=(n, D2[i]), disp=False, xtol=1e-8, ftol=1e-8, full_output=True)
            if tempD1[1] < 1.e-6:
                D1eq1Err[i] = tempD1[1]
                D1eq1[i] = tempD1[0][0]
                break
            else:
                D1eq1Err[i] = -1.
                D1eq1[i] = -1.

        # Fix D1 and solve for D2.
        for guessD2 in np.arange(0.,1.,0.1):
            D1 = D
            tempD2 = optimize.fmin(equation2, guessD2, args=(n, D1[i]), disp=False, xtol=1e-8, ftol=1e-8, full_output=True)
            if tempD2[1] < 1.e-6:
                D2eq2Err[i] = tempD2[1]
                D2eq2[i] = tempD2[0][0]
                break
            else:
                D2eq2Err[i] = -2.
                D2eq2[i] = -2.

    for i in range(len(D)):
        f.write('%0.8f,%0.8f,%0.8f,%0.8f,%0.8f\n' %(D[i], D1eq1[i], D2eq2[i], D1eq1Err[i], D2eq2Err[i]))
    f.write('\n\n')
f.close()

Upvotes: 1

Views: 1297

Answers (1)

Stefan
Stefan

Reputation: 4530

This is a very ill-posed problem. Let's recap what you are trying to do:

  • You want to solve 100000 optimization problems
  • Each optimization problem is 2 dimensional, so you need O(10000) function evaluations (estimating O(100) function evaluations for a 1D optimization problem)
  • Each function evaluation depends on the evaluation of two numerical integrals
  • The integrands contain jumps, i.e. they are 0-times contiguously differentiable
  • The integrands are composed of periodic functions, so they have multiple minima and maxima

So you are off to a very hard time. In addition, even in the most optimistic estimate in which all factors in the integrand that are < 1 are replaced by 1, the integrals can only take values between -2*pi and 2*pi. Much less than that in reality. So you can already see that you only have a chance of a solution for

I1 - z = 0
I2 + z = 0

for very small numbers of z. So there is no point in trying up to z = 1000.

I am almost certain that this is not the problem you need to solve. (I cannot imagine a context in which such a problem would appear. It seems like a weird twist on Fourier coefficient computation...) But in case you insist, your best bet is to work on the inner loop first.

As you noted, the numerical evaluation of the integrals is subject to large errors. This is due to the jumps introduced by the sgn() function. Functions such as scipy.integrate.quad() tend to use higher order algorithms which assume that the integrands are smooth. If they are not, they perform very badly. You either need to hand-pick an algorithm that can deal with jumps or, much better in this case, do the integrals by hand:

The following algorithm calculates the jump points of the sgn() function and then evaluates the analytic integrals on all pieces:

altsigns = np.ones(50)
altsigns[1::2] = -1

def get_breaks(x, y, a, b):
    sa = np.arange(0, 2*a, 2)
    sb = np.arange(0, 2*b, 2)

    zx  = (( x + sa) % (2*a))*np.pi/a
    zx2 = ((-x + sa) % (2*a))*np.pi/a
    zy  = (( y + sb) % (2*b))*np.pi/b
    zy2 = ((-y + sb) % (2*b))*np.pi/b

    zi = np.r_[np.sort(np.hstack((zx, zx2, zy, zy2))), 2*pi]
    if zi[0]:
        zi = np.r_[0, zi]
    return zi

def integrals(x, y, a, b):
    zi = get_breaks(x % 1., y % 1., a, b)
    sins = np.vstack((np.sin(b*zi), np.sin(a*zi)))
    return (altsigns[:zi.size-1]*(sins[:,1:] - sins[:,:-1])).sum(1) / np.array((b, a))

This gets rid of the problem of the numerical integration. It is very accurate and fast. However, even the integrals will not be perfectly contiguous for all parameters, so in order to solve your optimization problem, you are better off using an algorithm that doesn't rely on the existence of any derivatives. The only choice in scipy is scipy.optimize.fmin(), which you can use like:

def equations2(p, z):
    x, y = p
    I1, I2 = integrals(x, y, 6., 5.)

    fact = 1. / pi
    eq1 = fact * I1 + z
    eq2 = fact * I2 - z
    return eq1, eq2

def norm2(p, z):
    eq1, eq2 = equations2(p, z)
    return eq1**2 + eq2**2  # this has the minimum when eq1 == eq2 == 0

z = 0.25

res = fmin(norm2, (0.25, 0.25), args=(z,), xtol=1e-8, ftol=1e-8)
print res
# -> [ 0.3972  0.5988]

print equations2(res, z)
# -> (-2.7285737558280232e-09, -2.4748670890417657e-09)

You are still left with the problem of finding suitable starting values for all z, which is still a tricky business. Good Luck!

Edit

To check if you still have numerical errors, plug the result of the optimization back in the equations and see if they are satisfied to the required accuracy, which is what I did above. Note that I used (0.25, 0.25) as a starting value, since starting at (0.5, 0.5) didn't lead to convergence. This is normal for optimizations problems with local minima (such as yours). There is no better way to deal with this other than trying multiple starting values, rejecting non-converged results. In the case above, if equations2(res, z) returns anything higher than, say, (1e-6, 1e-6), I would reject the result and try again with a different starting value. A very useful technique for successive optimization problems is to use the result of the previous problem as the starting value for the next problem.

Note however that you have no guarantee of a smooth solution for D1(z) and D2(z). Just a tiny change in D1 could push one break point off the integration interval, resulting in a big change of the value of the integral. The algorithm may well adjust by using D2, leading to jumps in D1(z) and D2(z). Note also that you can take any result modulo 1, due to the symmetries of cos(pi*D1).

The bottom line: There shouldn't be any remaining numerical inaccuracies if you use the analytical formula for the integrals. If the residuals are less than the accuracy you specified, this is your solution. If they are not, you need to find better starting values. If you can't, a solution may not exist. If the solutions are not contiguous as a function of z, that is also expected, since your integrals are not contiguous. Good luck!

Edit 2

It appears your equations have two solutions in the interval z in [0, ~0.46], and no solutions for z > 0.46, see the first figure below. To prove this, see the good old graphical solution in the second figure below. The contours represent solutions of Eq. 1 (vertical) and Eq. 2 (horizontal), for different z. You can see that the contours cross twice for z < 0.46 (two solutions) and not at all for z > 0.46 (no solution that simultaneously satisfies both equations). If this is not what you expected, you need to write down different equations (which was my suspicion in the first place...)

Solution Contours

Here is the final code I was using:

import numpy as np
from numpy import sin, cos, sign, pi, arange, sort, concatenate
from scipy.optimize import fmin

a = 6.0
b = 5.0

def P(z, x, y):
    return sign((cos(a*z) - cos(pi*x)) * (cos(b*z) - cos(pi*y)))

def P1(z, x, y):
    return P(z, x, y) * cos(b*z)

def P2(z, x, y):
    return P(z, x, y) * cos(a*z)

altsigns = np.ones(50)
altsigns[1::2] = -1

twopi = 2*pi
pi_a = pi/a
da = 2*pi_a
pi_b = pi/b
db = 2*pi_b
lim = np.array([0., twopi])

def get_breaks(x, y):
    zx  = arange(x*pi_a, twopi, da)
    zx2 = arange((2-x)*pi_a, twopi, da)
    zy  = arange(y*pi_b, twopi, db)
    zy2 = arange((2-y)*pi_b, twopi, db)
    zi = sort(concatenate((lim, zx, zx2, zy, zy2)))
    return zi

ba = np.array((b, a))[:,None]
fact = np.array((1. / b, 1. / a))

def integrals(x, y):
    zi = get_breaks(x % 1., y % 1.)
    sins = sin(ba*zi)
    return fact * (altsigns[:zi.size-1]*(sins[:,1:] - sins[:,:-1])).sum(1)

def equations2(p, z):
    x, y = p
    I1, I2 = integrals(x, y)

    fact = 1. / pi
    eq1 = fact * I1 + z
    eq2 = fact * I2 - z
    return eq1, eq2

def norm2(p, z):
    eq1, eq2 = equations2(p, z)
    return eq1**2 + eq2**2

def eval_integrals(Nx=100, Ny=101):
    x = np.arange(Nx) / float(Nx)
    y = np.arange(Ny) / float(Ny)
    I = np.zeros((Nx, Ny, 2))
    for i in xrange(Nx):
        xi = x[i]
        Ii = I[i]
        for j in xrange(Ny):
            Ii[j] = integrals(xi, y[j])
    return x, y, I

def solve(z, start=(0.25, 0.25)):
    N = len(z)
    res = np.zeros((N, 2))
    res.fill(np.nan)

    for i in xrange(N):
        if i < 100:
            prev = start
        prev = fmin(norm2, prev, args=(z[i],), xtol=1e-8, ftol=1e-8)
        if norm2(prev, z[i]) < 1e-7:
            res[i] = prev
        else:
            break
    return res


#x, y, I = eval_integrals(Nx=1000, Ny=1001)

#zlvl = np.arange(0.2, 1.2, 0.2)
#contour(x, y, -I[:,:,0].T/pi, zlvl)
#contour(x, y,  I[:,:,1].T/pi, zlvl)

N = 1000
z = np.linspace(0., 1., N)
res = np.zeros((N, 2, 2))

res[:,0,:] = solve(z, (0.25, 0.25))
res[:,1,:] = solve(z, (0.05, 0.95))

Upvotes: 1

Related Questions