Reputation: 15
I am planning to calculate b (Its also x on Xo axis) for which curve (function) length from 0 to x is equal 1.
By knowing: https://www.mathsisfun.com/calculus/arc-length.html
(integral from 0 to b) ∫ (1 + ((f’(x))^2)^(1/2) dx = 1
and that:
(integral from a to b) ∫ f(x)dx = F(b) - F(a)
We can calculate it by
1 - F(0) + F(b) = 0 , where this is now an Equation in terms of x, beacuse b as I said is x on Xo axis.
So now I tried it for f(x) = x**3 (full code will be below)
F(b) is equal to this monster: https://www.wolframalpha.com/input/?i=integral&assumption=%7B%22C%22%2C+%22integral%22%7D+-%3E+%7B%22Calculator%22%7D&assumption=%7B%22F%22%2C+%22Integral%22%2C+%22integrand%22%7D+-%3E%22%281+%2B+9x%5E4%29%5E%281%2F2%29%22
All I get from SymPy is ConditionSet but not number. Of course ConditionSet cannot be evauluated by evalf()
So here are my questions:
Code:
from __future__ import division
import matplotlib.pyplot as plt
from sympy import *
x, y, z = symbols('x y z', real=True)
function1 = x**3
Antiderivative1 = integrate((1+(diff(function1))**2)**(1/2), x)
b = solveset(Eq(1 + Antiderivative1.subs(x, 0).evalf() - Antiderivative1, 0), x)
print(b)
Thats the output:
ConditionSet(x, Eq(x*hyper((-0.5, 1/4), (5/4,), 9*x**4*exp_polar(I*pi)) - 4.0*gamma(5/4)/gamma(1/4), 0), Complexes)
Thanks in advance and sorry for mistakes in grammar.
Upvotes: 0
Views: 240
Reputation: 14500
Note that you should use S(1)/2
or Rational(1, 2)
(or sqrt
) rather than 1/2
which will give you a float
in Python. With that we have
In [16]: integrand = sqrt(1 + ((x**3).diff(x))**2)
In [17]: integrand
Out[17]:
__________
╱ 4
╲╱ 9⋅x + 1
In [18]: antiderivative = integrand.integrate(x)
In [19]: antiderivative
Out[19]:
┌─ ⎛-1/2, 1/4 │ 4 ⅈ⋅π⎞
x⋅Γ(1/4)⋅ ├─ ⎜ │ 9⋅x ⋅ℯ ⎟
2╵ 1 ⎝ 5/4 │ ⎠
─────────────────────────────────────
4⋅Γ(5/4)
While that isn't the same form as the result from Wolfram Alpha it could easily be the same function (up to an additive constant). From this result or the one on Wolfram Alpha I very much doubt that you will find an analytic solution (using SymPy or anything else).
You can however find a numerical solution. Unfortunately there is a bug in SymPy's lambdify
function that means nsolve
doesn't work with this function:
In [22]: nsolve(equation, x, 1)
...
NameError: name 'exp_polar' is not defined
We can do it ourselves with Newton steps though:
In [76]: f = equation.lhs
In [77]: fd = f.diff(x)
In [78]: newton = lambda xi: (xi - f.subs(x, xi)/fd.subs(x, xi)).evalf()
In [79]: xj = 1.0
In [80]: xj = newton(xj); print(xj)
0.826749667942050
In [81]: xj = newton(xj); print(xj)
0.791950624620750
In [82]: xj = newton(xj); print(xj)
0.790708415511451
In [83]: xj = newton(xj); print(xj)
0.790706893629886
In [84]: xj = newton(xj); print(xj)
0.790706893627605
In [85]: xj = newton(xj); print(xj)
0.790706893627605
Upvotes: 1