Reputation: 4546
I have a Pandas DataFrame
indexed by date. There a number of columns but many columns are only populated for part of the time series. I'd like to find where the first and last values non-NaN
values are located so that I can extracts the dates and see how long the time series is for a particular column.
Could somebody point me in the right direction as to how I could go about doing something like this?
Upvotes: 93
Views: 103107
Reputation: 10510
A convenience function based on behzad.nouri's commend and cs95's earlier answer. Any errors or misunderstandings are mine.
import pandas as pd
import numpy as np
df = pd.DataFrame([["2022-01-01", np.nan, np.nan, 1], ["2022-01-02", 2, np.nan, 2], ["2022-01-03", 3, 3, 3], ["2022-01-04", 4, 4, 4], ["2022-01-05", np.nan, 5, 5]], columns=['date', 'A', 'B', 'C'])
df['date'] = pd.to_datetime(df['date'])
df
# date A B C
#0 2022-01-01 NaN NaN 1.0
#1 2022-01-02 2.0 NaN 2.0
#2 2022-01-03 3.0 3.0 3.0
#3 2022-01-04 4.0 4.0 4.0
#4 2022-01-05 NaN 5.0 5.0
We want to start at the earliest date common to A and B and end at the latest date common to A and B (for whatever reason, we do not filter by column C).
# filter data to minimum/maximum common available dates
def get_date_range(df, cols):
"""return a tuple of the earliest and latest valid data for all columns in the list"""
a,b = df[cols].apply(pd.Series.first_valid_index).max(), df[cols].apply(pd.Series.last_valid_index).min()
return (df.loc[a, 'date'], df.loc[b, 'date'])
a,b = get_date_range(df, cols=['A', 'B'])
a
#Timestamp('2022-01-03 00:00:00')
b
#Timestamp('2022-01-04 00:00:00')
Now filter the data:
df.loc[(df.date >= a) & (df.date <= b)]
# date A B C
#2 2022-01-03 3.0 3.0 3
#3 2022-01-04 4.0 4.0 4
Upvotes: 1
Reputation: 402363
Here's some helpful examples.
s = pd.Series([np.NaN, 1, np.NaN, 3, np.NaN], index=list('abcde'))
s
a NaN
b 1.0
c NaN
d 3.0
e NaN
dtype: float64
# first valid index
s.first_valid_index()
# 'b'
# first valid position
s.index.get_loc(s.first_valid_index())
# 1
# last valid index
s.last_valid_index()
# 'd'
# last valid position
s.index.get_loc(s.last_valid_index())
# 3
Alternative solution using notna
and idxmax
:
# first valid index
s.notna().idxmax()
# 'b'
# last valid index
s.notna()[::-1].idxmax()
# 'd'
df = pd.DataFrame({
'A': [np.NaN, 1, np.NaN, 3, np.NaN],
'B': [1, np.NaN, np.NaN, np.NaN, np.NaN]
})
df
A B
0 NaN 1.0
1 1.0 NaN
2 NaN NaN
3 3.0 NaN
4 NaN NaN
(first|last)_valid_index
isn't defined on DataFrames, but you can apply them on each column using apply
.
# first valid index for each column
df.apply(pd.Series.first_valid_index)
A 1
B 0
dtype: int64
# last valid index for each column
df.apply(pd.Series.last_valid_index)
A 3
B 0
dtype: int64
As before, you can also use notna
and idxmax
. This is slightly more natural syntax.
# first valid index
df.notna().idxmax()
A 1
B 0
dtype: int64
# last valid index
df.notna()[::-1].idxmax()
A 3
B 0
dtype: int64
Upvotes: 57
Reputation: 4546
@behzad.nouri's solution worked perfectly to return the first and last non-NaN values
using Series.first_valid_index and Series.last_valid_index, respectively.
Upvotes: 77