Reputation: 192
I am dealing with sub-surface measurements from a borehole where each measurement type covers a different range of depths. Depth is being used as the index in this case.
I need to find the depth (index) of the first and/or last occurrence of data (non-NaN value) for each measurement type.
Getting the depth (index) of the first or last row of the dataframe is easy: df.index[0]
or df.index[-1]
. The trick is in finding the index of the first or last non-NaN occurrence of any given column.
df = pd.DataFrame([[500, np.NaN, np.NaN, 25],
[501, np.NaN, np.NaN, 27],
[502, np.NaN, 33, 24],
[503, 4, 32, 18],
[504, 12, 45, 5],
[505, 8, 38, np.NaN]])
df.columns = ['Depth','x1','x2','x3']
df.set_index('Depth')
The ideal solution would produce an index (depth) of 503 for the first occurrence of x1, 502 for the first occurrence of x2, and 504 for the last occurrence of x3.
Upvotes: 7
Views: 2249
Reputation: 153460
Let's try this, if I understand you correctly:
pd.concat([df.apply(pd.Series.first_valid_index),
df.apply(pd.Series.last_valid_index)],
axis=1,
keys=['Min_Depth', 'Max_Depth'])
Output:
Min_Depth Max_Depth
x1 503 505
x2 502 505
x3 500 504
Or Transpose output:
pd.concat([df.apply(pd.Series.first_valid_index),
df.apply(pd.Series.last_valid_index)],
axis=1,
keys=['Min_Depth', 'Max_Depth']).T
Output:
x1 x2 x3
Min_Depth 503 502 500
Max_Depth 505 505 504
Using apply with a list of func:
df.apply([pd.Series.first_valid_index, pd.Series.last_valid_index])
Output:
x1 x2 x3
first_valid_index 503 502 500
last_valid_index 505 505 504
With a little renaming:
df.apply([pd.Series.first_valid_index, pd.Series.last_valid_index])\
.set_axis(['Min_Depth', 'Max_Depth'], axis=0, inplace=False)
Output:
x1 x2 x3
Min_Depth 503 502 500
Max_Depth 505 505 504
Upvotes: 2
Reputation: 75080
You can agg
:
df.notna().agg({'x1':'idxmax','x2':'idxmax','x3':lambda x: x[::-1].idxmax()})
#df.notna().agg({'x1':'idxmax','x2':'idxmax','x3':lambda x: x[x].last_valid_index()})
x1 503
x2 502
x3 504
Another way would be to check if first row is nan and according to that apply the condition:
np.where(df.iloc[0].isna(),df.notna().idxmax(),df.notna()[::-1].idxmax())
[503, 502, 504]
Upvotes: 4
Reputation: 51
first_valid_index() and last_valid_index() can be used.
>>> df
x1 x2 x3
Depth
500 NaN NaN 25.0
501 NaN NaN 27.0
502 NaN 33.0 24.0
503 4.0 32.0 18.0
504 12.0 45.0 5.0
505 8.0 38.0 NaN
>>> df["x1"].first_valid_index()
503
>>> df["x2"].first_valid_index()
502
>>> df["x3"].first_valid_index()
500
>>> df["x3"].last_valid_index()
504
Upvotes: 5
Reputation: 323226
IIUC
df.stack().groupby(level=1).head(1)
Out[619]:
Depth
500 x3 25.0
502 x2 33.0
503 x1 4.0
dtype: float64
Upvotes: 2