Reputation: 1
I have a data-set which is loaded into matlab
. I need to do exponential fitting for the plotted curve without using the curve fitting tool cftool
.
I want to do this manually through executing a code/function that will output the values of a
and b
corresponding to the equation:
y = a*exp(b*x)
Then be using those values, I will do error optimization and create the best fit for the data I have.
Any help please?
Thanks in advance.
Upvotes: 0
Views: 4544
Reputation: 1
In this exercise I have a set of data that present an exponential curve and I want to fit them exponentially and get the values of a and b. I used the following code and it worked with the data I have.
"trail.m" file:
%defining the data used
load trialforfitting.txt;
xdata= trialforfitting(:,1);
ydata= trialforfitting(:,2);
%calling the "fitcurvedemo" function
[estimates, model] = fitcurvedemo(xdata,ydata)
disp(sse);
plot(xdata, ydata, 'o'); %Data curve
hold on
[sse, FittedCurve] = model(estimates);
plot(xdata, FittedCurve, 'r')%Fitted curve
xlabel('Voltage (V)')
ylabel('Current (A)')
title('Exponential Fitting to IV curves');
legend('data', ['Fitting'])
hold off
"fitcurvedemo.m" file:
function [estimates, model] = fitcurvedemo(xdata, ydata)
%Call fminsearch with a random starting point.
start_point = rand(1, 2);
model = @expfun;
estimates = fminsearch(model, start_point);
%"expfun" accepts curve parameters as inputs, and outputs
%the sum of squares error [sse] expfun is a function handle;
%a value that contains a matlab object methods and the constructor
%"FMINSEARCH" only needs sse
%estimate returns the value of A and lambda
%model computes the exponential function
function [sse, FittedCurve] = expfun(params)
A = params(1);
lambda = params(2);
%exponential function model to fit
FittedCurve = A .* exp(lambda * xdata);
ErrorVector = FittedCurve - ydata;
%output of the expfun function [sum of squares of error]
sse = sum(ErrorVector .^ 2);
end
end
I have a new set of data that doesn't work with this code and give the appropriate exponential fit for the data curve plotted.
Upvotes: 0
Reputation: 231
I think the typical objective in this type of assignment is to recognize that by taking the log of both sides, various methods of polynomial fit approaches can be used.
ln(y) = ln(a) + ln( exp(x).^b )
ln(y) = ln(a) + b * ln( exp(x) )
There can be difficulties with this approach when errors such as noise are involved due to the behavior of ln as it approaches zero.
Upvotes: 0