Reputation: 4006
Can Seaborn's lmplot
plot on log-log scale?
This is lmplot with linear axes:
import numpy as np
import pandas as pd
import seaborn as sns
x = 10**arange(1, 10)
y = 10** arange(1,10)*2
df1 = pd.DataFrame( data=y, index=x )
df2 = pd.DataFrame(data = {'x': x, 'y': y})
sns.lmplot('x', 'y', df2)
sns.lmplot('x', 'y', df2)
:
Upvotes: 54
Views: 120499
Reputation: 191
Generally, without explicit usage of matplotlib, use the subplot_kws
argument in the facet_kws
argument of the plot function.
From the seaborn documentation https://seaborn.pydata.org/generated/seaborn.lmplot.html
facet_kws: dict
Dictionary of keyword arguments for FacetGrid.
Example: facet_kws={"subplot_kws": {"yscale": "log"}}
for a y-axis in log-scale.
Of course, be sure data processed is positive.
Upvotes: 1
Reputation: 950
The simplest way to make a log-log plot from (probably) any seaborn plot is:
plt.xscale('log')
plt.yscale('log')
In the example:
import numpy as np
import pandas as pd
import seaborn as sns
x = 10**np.arange(1, 10)
y = 10** np.arange(1,10)*2
df1 = pd.DataFrame( data=y, index=x )
df2 = pd.DataFrame(data = {'x': x, 'y': y})
sns.lmplot('x', 'y', df2)
plt.xscale('log')
plt.yscale('log')
Upvotes: 13
Reputation: 49022
If you just want to plot a simple regression, it will be easier to use seaborn.regplot
. This seems to work (although I'm not sure where the y axis minor grid goes)
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
x = 10 ** np.arange(1, 10)
y = x * 2
data = pd.DataFrame(data={'x': x, 'y': y})
f, ax = plt.subplots(figsize=(7, 7))
ax.set(xscale="log", yscale="log")
sns.regplot("x", "y", data, ax=ax, scatter_kws={"s": 100})
If you need to use lmplot
for other purposes, this is what comes to mind, but I'm not sure what's happening with the x axis ticks. If someone has ideas and it's a bug in seaborn, I'm happy to fix it:
grid = sns.lmplot('x', 'y', data, size=7, truncate=True, scatter_kws={"s": 100})
grid.set(xscale="log", yscale="log")
Upvotes: 77
Reputation: 68186
Call the seaborn function first. It returns a FacetGrid
object which has an axes
attribute (a 2-d numpy array of matplotlib Axes
). Grab the Axes
object and pass that to the call to df1.plot
.
import numpy as np
import pandas as pd
import seaborn as sns
x = 10**np.arange(1, 10)
y = 10**np.arange(1,10)*2
df1 = pd.DataFrame(data=y, index=x)
df2 = pd.DataFrame(data = {'x': x, 'y': y})
fgrid = sns.lmplot('x', 'y', df2)
ax = fgrid.axes[0][0]
df1.plot(ax=ax)
ax.set_xscale('log')
ax.set_yscale('log')
Upvotes: 6