Reputation: 6649
I have some data from a poisson distribution and have a simple equation I want to solve using glm.
The mathematical equation is observed = y * expected.
I have the observed and expected data and want to use glm to find the optimal value of y which I need to multiply expected by to get observed. I also want to get confidence intervals for y.
Should I be doing something like this
glm(observed ~ expected + offset(log(expected)) + 0, family = 'poisson', data = dataDF)
Then taking the exponential of the coefficient? I tried this but the value given is pretty different to what I get when I divide the sum of the observed by the sum of the expected, and I thought these should be similar.
Am I doing something wrong?
Thanks
Upvotes: 0
Views: 377
Reputation: 263352
Try this:
logFac <- coef( glm(observed ~ offset(expected) , family = 'poisson', data = dataDF))
Fac <- exp( logFac[1] ) # That's the intercept term
That model is really : observed ~ 1 + offset(expected)
and since it's being estimated on a log scale, the intercept becomes that conversion factor to convert between 'expected' and 'observed'. The negative comments are evidence that you should have posted on CrossValidated.com where general statistics methods questions are more welcomed.
Upvotes: 1