Reputation: 11
I'm currently working in an stereo vision project, in which I'm supposed to reconstruct 3D points from correspondences found in each camera view, and for that I'm using OpenCV 2.4.7 for C++.
I was able to correctly calibrate both cameras, compute fundamental matrix, compute re-projection matrix and also rectify images.
My problem lies on the final part of the project, which is compute 3D world coordinates from 2D point correspondences. I already tried using cv::triangulatePoints, but the results where points with coordinates (0, 0, 0), no matter what the input points were. I also tried the linear triangulation algorithm by Hartley & Strum, but that didn't give me good results either.
Could somebody give me a hint on what function I should use? Or maybe some tips on how to correctly implement the ones I've talked about. My biggest problem is to find good documentation on the internet, so that's why I decided to ask here.
Thank you!
Upvotes: 1
Views: 2134
Reputation: 445
I tried cv::triangulatePoints also and it calculates garbage. I was forced to implement a linear triangulation method manually, which returns the triangulated 3D point given a stereo pixel correspondence:
Mat triangulate_Linear_LS(Mat mat_P_l, Mat mat_P_r, Mat warped_back_l, Mat warped_back_r)
{
Mat A(4,3,CV_64FC1), b(4,1,CV_64FC1), X(3,1,CV_64FC1), X_homogeneous(4,1,CV_64FC1), W(1,1,CV_64FC1);
W.at<double>(0,0) = 1.0;
A.at<double>(0,0) = (warped_back_l.at<double>(0,0)/warped_back_l.at<double>(2,0))*mat_P_l.at<double>(2,0) - mat_P_l.at<double>(0,0);
A.at<double>(0,1) = (warped_back_l.at<double>(0,0)/warped_back_l.at<double>(2,0))*mat_P_l.at<double>(2,1) - mat_P_l.at<double>(0,1);
A.at<double>(0,2) = (warped_back_l.at<double>(0,0)/warped_back_l.at<double>(2,0))*mat_P_l.at<double>(2,2) - mat_P_l.at<double>(0,2);
A.at<double>(1,0) = (warped_back_l.at<double>(1,0)/warped_back_l.at<double>(2,0))*mat_P_l.at<double>(2,0) - mat_P_l.at<double>(1,0);
A.at<double>(1,1) = (warped_back_l.at<double>(1,0)/warped_back_l.at<double>(2,0))*mat_P_l.at<double>(2,1) - mat_P_l.at<double>(1,1);
A.at<double>(1,2) = (warped_back_l.at<double>(1,0)/warped_back_l.at<double>(2,0))*mat_P_l.at<double>(2,2) - mat_P_l.at<double>(1,2);
A.at<double>(2,0) = (warped_back_r.at<double>(0,0)/warped_back_r.at<double>(2,0))*mat_P_r.at<double>(2,0) - mat_P_r.at<double>(0,0);
A.at<double>(2,1) = (warped_back_r.at<double>(0,0)/warped_back_r.at<double>(2,0))*mat_P_r.at<double>(2,1) - mat_P_r.at<double>(0,1);
A.at<double>(2,2) = (warped_back_r.at<double>(0,0)/warped_back_r.at<double>(2,0))*mat_P_r.at<double>(2,2) - mat_P_r.at<double>(0,2);
A.at<double>(3,0) = (warped_back_r.at<double>(1,0)/warped_back_r.at<double>(2,0))*mat_P_r.at<double>(2,0) - mat_P_r.at<double>(1,0);
A.at<double>(3,1) = (warped_back_r.at<double>(1,0)/warped_back_r.at<double>(2,0))*mat_P_r.at<double>(2,1) - mat_P_r.at<double>(1,1);
A.at<double>(3,2) = (warped_back_r.at<double>(1,0)/warped_back_r.at<double>(2,0))*mat_P_r.at<double>(2,2) - mat_P_r.at<double>(1,2);
b.at<double>(0,0) = -((warped_back_l.at<double>(0,0)/warped_back_l.at<double>(2,0))*mat_P_l.at<double>(2,3) - mat_P_l.at<double>(0,3));
b.at<double>(1,0) = -((warped_back_l.at<double>(1,0)/warped_back_l.at<double>(2,0))*mat_P_l.at<double>(2,3) - mat_P_l.at<double>(1,3));
b.at<double>(2,0) = -((warped_back_r.at<double>(0,0)/warped_back_r.at<double>(2,0))*mat_P_r.at<double>(2,3) - mat_P_r.at<double>(0,3));
b.at<double>(3,0) = -((warped_back_r.at<double>(1,0)/warped_back_r.at<double>(2,0))*mat_P_r.at<double>(2,3) - mat_P_r.at<double>(1,3));
solve(A,b,X,DECOMP_SVD);
vconcat(X,W,X_homogeneous);
return X_homogeneous;
}
the input parameters are two 3x4 camera projection matrices and the left/right corresponding homogeneous pixel coordinates.
Upvotes: 0