Reputation: 307
I was trying to represent a real number with two integer numbers as using them as the numerator and the denominator of the real number. I wrote the following program:
(declare-const a Int)
(declare-const b Int)
(declare-const f Real)
(assert (= f (/ a b)))
(assert (= f 0.5))
(assert (> b 2))
(assert (> b a))
(check-sat)
(get-model)
The program returned SAT result as follows:
sat
(model
(define-fun f () Real
(/ 1.0 2.0))
(define-fun b () Int
4)
(define-fun a () Int
2)
)
However, if I write '(assert (= f (div a b)))' instead of '(assert (= f (/ a b)))', then the result is UNSAT. Why does not div return the same result?
Moreover, and the main concern for me, I did not find a way to use operator '/' in z3 .Net API. I can see only function MkDiv, which actually for operator 'div'. Is there a way so that I can apply operator '/' in the case of z3 .Net API? Thank you in advance.
Upvotes: 3
Views: 626
Reputation: 8392
Strictly speaking neither of these formulas is SMT-LIB2 compliant, because /
is a function that takes two Real inputs and produces a Real output, whereas div
is a function that takes two Int inputs and produces an Int (see SMT-LIB Theories). Z3 is more relaxed and automatically converts those objects. If we enable the option smtlib2_compliant=true
then it will indeed report an error in both cases.
The reason for the div
version being unsatisfiable is that there is indeed no solution where f
is an integer according to (= f (/ a b))
, but there is indeed no integer that satisfies (= f 0.5)
Upvotes: 3