Reputation: 6477
#include <Rcpp.h>
#include <vector>
extern "C"
{
#include "cheader.h"
}
using namespace Rcpp;
// [[Rcpp::export]]
NumericVector cppfunction(NumericVector inputR){
double const* input = inputR.begin();
size_t N = inputR.size();
double output[10*N];
cfunction(input, N, output);
std::vector<double> outputR(output, output + sizeof(output) / sizeof(double));
return wrap(outputR);
}
This works except I have to manually convert the vector outputR to matrix in R. I could of course also make outputR to NumericMatrix (or can I?) and then return that but my real question is that is the above procedure optimal? Do I have to convert output first to std::vector and then NumericVector/Matrix or can I somehow avoid that? I tried wrapping output directly but that didn't work.
Upvotes: 3
Views: 4501
Reputation: 269371
Put this in a file, cppfunction.cpp
, and run it via library(Rcpp); sourceCpp("cppfunction.cpp")
. Since cfunction
was not provided we provide one which adds 1 to each input element:
#include <Rcpp.h>
using namespace Rcpp;
void cfunction(double* x, int n, double* y) {
for(int i = 0; i < n; i++) y[i] = x[i] + 1;
}
// [[Rcpp::export]]
NumericVector cppfunction(NumericVector x){
NumericVector y(x.size());
cfunction(REAL(x), x.size(), REAL(y));
return y;
}
/*** R
x <- c(1, 2, 3, 4)
cppfunction(x)
## [1] 2 3 4 5
*/
If you want to return a NumericMatrix
then assuming that the length of x
has an integer square root:
#include <Rcpp.h>
using namespace Rcpp;
void cfunction(double* x, int n, double* y) {
for(int i = 0; i < n; i++) y[i] = x[i] + 1;
}
// [[Rcpp::export]]
NumericMatrix cppfunctionM(NumericVector x){
int n = sqrt(x.size());
NumericMatrix y(n, n);
cfunction(REAL(x), x.size(), REAL(y));
return y;
}
/*** R
x <- c(1, 2, 3, 4)
cppfunctionM(x)
## [,1] [,2]
## [1,] 2 4
## [2,] 3 5
*/
Upvotes: 6