Reputation: 49
I want to write a program in Haskell which will take command line arguments. For example: to print the sum of the first 6 elements of the series (which will be calculated by another function), I will write:
sum 6
and the correct answer should be displayed. I have to do this for another 5-7 different commands by checking the command line. How should I do it? Is switch case a good idea? If so, can anyone tell me how it can be done.
SOLUTION:
main = do
--Get some input
f <- getLine
--Split the input into 2 strings; one is COMMAND field and other is the ARGUMENT field using the condition the there is one space between them
let cmd = takeWhile (/=' ') f
let arg = dropWhile (/=' ') f
let val = tail arg
let p = read val::Int
--Check for the COMMAND
case cmd of
"SUM" -> if (empty arg) then do { putStrLn "ERR"; exitWith ExitSuccess} else if (check val) then print (sum1 p) else do { putStrLn "ERR"; exitWith ExitSuccess}
"NTH" -> if (empty arg) then do { putStrLn "ERR"; exitWith ExitSuccess} else if (check val) then print (fact p) else do { putStrLn "ERR"; exitWith ExitSuccess}
"BOUNDS" -> if (empty arg) then do { putStrLn "ERR"; exitWith ExitSuccess} else if (check val == False) then do { putStrLn "ERR"; exitWith ExitSuccess} else if (p > 1) then do { print c; print d} else do { putStrLn"ERR"; exitWith ExitSuccess}
"QUIT" -> if (empty arg) then exitWith ExitSuccess else do { putStrLn "ERR"; exitWith ExitSuccess}
_ -> do { putStrLn "ERR"; exitWith ExitSuccess}
--Repeat main until QUIT
main
Upvotes: 1
Views: 4272
Reputation: 12735
You can write your own simple applicative-style parser in just a few lines. The idea is: accept a list of string pairs, where the first string is an option name and the second string is an option value, lookup for a current option name, and if it's found, treat the associated value somehow and delete the pair from the list. If it's not found, return Nothing
. So Parser
is defined like this:
type Parser = StateT [(String, String)] Maybe
And here is the main function:
option :: (String -> Maybe a) -> String -> Parser a
option f str = StateT $ \xs -> do
(v, xs') <- lookupDelete str xs
v' <- f v
return (v', xs')
where lookupDelete
does what it says. Actual option parsers are:
sopt :: String -> Parser String
sopt = option Just
opt :: Read a => String -> Parser a
opt = option $ reads >>> listToMaybe >=> finish
finish (x, []) = Just x
finish _ = Nothing
The opt
parser tries to read a string, and it succeeds if the string is read fully.
optPairs [] = Just []
optPairs (('-':'-':name):opt:xs) = ((name, opt) :) <$> optPairs xs
optPairs _ = Nothing
This function splits input into pairs. And lastly
parse :: Parser a -> String -> Maybe a
parse p = words >>> optPairs >=> runStateT p >=> finish
Here is an example:
data SubCommand = SubCommand String (Double, Double)
deriving (Show)
data Command = Sum [Integer]
| Sub SubCommand
deriving (Show)
subcommandParser :: Parser SubCommand
subcommandParser = SubCommand <$> sopt "str" <*> opt "dbls"
commandParser :: Parser Command
commandParser = Sum <$> opt "sum" <|> Sub <$> subcommandParser
main = mapM_ (print . parse commandParser)
[ "--sum [1,2,3,4]"
, "--str option --dbls (2.2,0)"
, "--dbls (2.2,0) --str option"
, "--smth smth"
]
Results in
Just (Sum [1,2,3,4])
Just (Sub (SubCommand "option" (2.2,0.0)))
Just (Sub (SubCommand "option" (2.2,0.0)))
Nothing
The whole code: http://lpaste.net/114365
Upvotes: 0
Reputation: 22636
Of course, if you have the time and the need, is much better to use a command line parser library than a switch case. A proper parser gives you the ability to have flags in any order, automatic documenation etc ... Although if you don't need any of this now, you might need it later.
However, pattern matching allows you check value(s) within a list, but although the size of the list, and this at the same time. This makes writing poor man command line parsing dead-easy in Haskell.
Example
main = do
args <- getArg
case args of
["command1", a, b] -> command1 a b -- 2 argument
["command2", a ] -> command2 a -- 1 argument
"command3":as -> command3 as -- n arguments
otherwise -> putStrLn "Please read the code to see which arguments are acceptable :-)"
So even though I would propably recommend using a parsing library, if you only need a couple of options without flags , and don't have time to learn/choose one, a simple case ... of
is pretty neat and much quicker/simpler to write.
Upvotes: 4
Reputation: 125327
optparse-applicative is one example of a library which supports this kind of sub-command parsing.
Let's say your program has two commands for now, "sum" and "mean". We can represent the command and its arguments using an algebraic data type, here called Command
.
import Data.Monoid (mconcat)
import Options.Applicative
data Command = Sum Integer
| Mean Integer
-- et cetera
We can build a parser which accepts all of the commands, by writing parsers for each individual command, and composing them.
parseNumber :: Parser Integer
parseNumber = argument auto (metavar "N")
sumParser :: ParserInfo Command
sumParser = info (Sum <$> parseNumber)
(progDesc "Sum first N elements in series")
meanParser :: ParserInfo Command
meanParser = info (Mean <$> parseNumber)
(progDesc "Mean of first N elements in series")
commandParser :: ParserInfo Command
commandParser = info commands $ progDesc "My program" where
commands = subparser $ mconcat [
command "sum" sumParser
, command "mean" meanParser
]
If you are wondering what Parser
and ParserInfo
are about: Usually we build a Parser
, then put it into a ParserInfo
, using the info
combinator to decorate it with additional information about how it should be run (for example, with progDesc
). Parser
s may be composed with other Parser
s, typically using the applicative combinators, but a ParserInfo
is only a Functor
, as it represents the entry point to the program.
Since each command is like a little sub-program, we need a ParserInfo
for each one. The command
and subparser
combinators let us take some ParserInfo
s and wrap them up in a Parser
, turning multiple entry points into one.
Once we have a result from the parser, we can dispatch to the appropriate routine by pattern matching on the result.
main :: IO ()
main = do
cmd <- execParser commandParser
case cmd of
Sum n -> return () -- TODO perform sum command
Mean n -> return () -- TODO perform mean command
Upvotes: 6