Reputation: 24678
I want to associate two raw values to an enum instance (imagine an enum representing error types, I want Error.Teapot
to have an Int type property code
with value 418, and a String property set to I'm a teapot
.)
Note the difference between raw values and associated values here—I want all Teapot
instances to have a code
of 418, I don't want a unique associated value for each Teapot
instance.
Is there a better way than adding computed properties to the enum that switch
ed on self
to look up the appropriate value?
Upvotes: 34
Views: 36590
Reputation: 164
First of all, enums should only have one raw value. However if you want to have something that can use multiple raw values... there is a way to 'hack' this, but you have to make it codable and hashable yourself, implement custom init's etc.
enum MyCustomEnum: Codable, Hashable {
// duplicate every case with associated value of Codable.Type
case myFirstCase, _myFirstCase(Codable.Type)
case mySecondCase, _mySecondCase(Codable.Type)
case myThirdCase, _myThirdCase(Codable.Type)
case unknown(Any), _unknown(Codable.Type, Any) // handles unknown values
// define an allCases value to determine the only values your app 'sees'.
static var allCases: [Self] {
return [
.myFirstCase,
.mySecondCase,
.myThirdCase
// unknown(String) // you can add unknown as well, but this is too mask any unknown values.
]
}
static func == (lhs: MyCustomEnum, rhs: MyCustomEnum) -> Bool {
return lhs.stringValue == rhs.stringValue // can be either one of your custom raw values.
}
// add this per raw value. In this case one for Int and one for String
init(rawValue: Int) {
guard let value = Self.allCases.first(where:{ $0.intValue == rawValue }) else {
self = ._unknown(Int.self, rawValue)
return
}
switch value {
case .myFirstCase: self = ._myFirstCase(Int.self)
case .mySecondCase: self = ._mySecondCase(Int.self)
case .myThirdCase: self = ._myThirdCase(Int.self)
default: self = ._unknown(Int.self, rawValue)
}
}
init(rawValue: String) {
guard let value = Self.allCases.first(where:{ $0.stringValue == rawValue }) else {
self = ._unknown(String.self, rawValue)
return
}
switch value {
case .myFirstCase: self = ._myFirstCase(String.self)
case .mySecondCase: self = ._mySecondCase(String.self)
case .myThirdCase: self = ._myThirdCase(String.self)
default: self = ._unknown(Int.self, rawValue)
}
}
// add this per raw value. In this case one for Int and one for String
var intValue: Int {
switch self {
case .myFirstCase, ._myFirstCase(_): return 1
case .mySecondCase, ._mySecondCase(_): return 2
case .myThirdCase, ._myThirdCase(_): return 3
case .unknown(let value), ._unknown(_, let value): return value as? Int ?? -1 // you can also choose to let intValue return optional Int.
}
}
var stringValue: String {
switch self {
case .myFirstCase, ._myFirstCase(_): return "my first case"
case .mySecondCase, ._mySecondCase(_): return "my second case"
case .myThirdCase, ._myThirdCase(_): return "my third case"
case .unknown(let value), ._unknown(_, let value): return value as? String ?? "not a String" // you can also choose to let stringValue return optional String.
}
}
// determine the codable type using Mirror
private func getCodableType() -> Codable.Type? {
let mirrorOfModuleType = Mirror.init(reflecting: self)
guard let childOfModuleType = mirrorOfModuleType.children.first else { // no children, means no associated values.
return nil
}
let value = childOfModuleType.value // can be either Codable.Type, String or (Codable.Type & String)
if let rawValue = value as? Codable.Type {
return rawValue
} else {
guard let rawValue = value as? (Codable.Type, String) else {
// unknown(String), we don't know the rawValue as given, but try in this part of the code to guess what type fits best.
if self.stringValue != "\(self.intValue)" { // e.g. "1" might match 1 but "1.0" and 1 don't match
return String.self
} else {
return Int.self // return either a default value, or nil. It's your choice.
}
}
return rawValue.0
}
}
// confine to hashable using getCodableType
func hash(into hasher: inout Hasher) {
if self.getCodableType() is String.Type {
hasher.combine(self.stringValue)
} else { // if you don't call hasher.combine at all, you can expect strange issues. If you do not know the type, choose one that is most common.
hasher.combine(self.intValue)
}
}
// confine to Decodable
init(from decoder: Decoder) throws {
if let rawValue = try? Int.init(from: decoder) {
self.init(rawValue: rawValue)
} else if let rawValue = try? String.init(from: decoder) {
self.init(rawValue: rawValue)
} else {
throw DecodingError.valueNotFound(Self.self, DecodingError.Context(codingPath: [], debugDescription: "no matching value was found"))
}
}
// confine to Encodable using getCodableType
func encode(to encoder: Encoder) throws {
let rawValue = self.getCodableType()
if rawValue is String.Type {
try self.stringValue.encode(to: encoder)
} else if rawValue is Int.Type {
try self.intValue.encode(to: encoder)
} else {
// getCodableType returns nil if it does not know what value it is. (e.g. myFirstCase without associated value) If you want to support this as well, you can encode using one of your rawValues to the encoder.
throw EncodingError.invalidValue(Self.self, EncodingError.Context.init(codingPath: [], debugDescription: "this enum does not have a correct value", underlyingError: nil))
}
}
}
this code is scalable to any number of raw value as long as they are Codable
Upvotes: -1
Reputation: 787
You have a couple options. But neither of them involve raw values. Raw values are just not the right tool for the task.
I personally highly recommend against there being more than one associated value per enum case. Associated values should be dead obvious (since they don't have arguments/names), and having more than one heavily muddies the water.
That said, it's something the language lets you do. This allows you to have each case defined differently as well, if that was something you needed. Example:
enum ErrorType {
case teapot(String, Int)
case skillet(UInt, [CGFloat])
}
Tuples are a great feature of Swift because they give you the power of creating ad-hoc types. That means you can define it in-line. Sweet!
If each of your error types are going to have a code and a description, then you could have a computed info
property (hopefully with a better name?). See below:
enum ErrorType {
case teapot
case skillet
var info: (code: Int, description: String) {
switch self {
case .teapot:
return (418, "Hear me shout!")
case .skillet:
return (326, "I'm big and heavy.")
}
}
}
Calling this would be much easier because you could use tasty, tasty dot syntax:
let errorCode = myErrorType.info.code
Upvotes: 33
Reputation: 201
I think it just tricky, and I have create my own idea like below:
enum Gender:NSNumber
{
case male = 1
case female = 0
init?(strValue: String?) {
switch strValue {
case Message.male.value:
self = .male
case Message.female.value:
self = .female
default: return nil
}
}
var strValue: String {
switch self {
case .male:
return Message.male.value
case .female:
return Message.female.value
}
}
}
Upvotes: 1
Reputation: 7098
Possible work around may to associate custom functions with enum
enum ToolbarType : String{
case Case = "Case", View="View", Information="Information"
static let allValues = [Case, View, Information]
func ordinal() -> Int{
return ToolbarType.allValues.index(of: self)!
}
}
Can be used as
for item in ToolbarType.allValues {
print("\(item.rawValue): \(item.ordinal())")
}
Output
Case: 0
View: 1
Information: 2
Possibly you can have additional functions to associate enum type to different values
Upvotes: 1
Reputation: 32815
For beginning, assuming you want to store a code and a message, you can use a struct for RawValue
struct ErrorInfo {
let code: Int
let message: String
}
Next step is to define the enum as being RawRepresentable
, and use ErrorInfo
as the raw value:
enum MyError: RawRepresentable {
typealias RawValue = ErrorInfo
case teapot
What remains is to map between instances of MyError
and ErrorInfo
:
static private let mappings: [(ErrorInfo, MyError)] = [
(ErrorInfo(code: 418, message: "I'm a teapot"), .teapot)
]
With the above, let's build the full definition of the enum:
enum MyError: RawRepresentable {
static private let mappings: [(ErrorInfo, MyError)] = [
(ErrorInfo(code: 418, message: "I'm a teapot"), .teapot)
]
case teapot
init?(rawValue: ErrorInfo) {
guard let match = MyError.mappings.first(where: { $0.0.code == rawValue.code && $0.0.message == rawValue.message}) else {
return nil
}
self = match.1
}
var rawValue: ErrorInfo {
return MyError.mappings.first(where: { $0.1 == self })!.0
}
}
Some notes:
Upvotes: 1
Reputation: 34993
In modern versions of Swift it's possible to get the string value of an enum case label, even without that enum being declared with a : String
rawValue.
How to get the name of enumeration value in Swift?
So there is no longer a need to define and maintain a convenience function that switches on each case to return a string literal. In addition, this works automatically for any enum, even if no raw-value type is specified.
This, at least, allows you to have "multiple raw values" by having both a real : Int
rawValue as well as the string used as the case label.
Upvotes: 0
Reputation: 201
This doesn't particularly answer your question, which was asking to find a better way than switch
ing through self
to look up the appropriate value but this answer may still be useful for someone looking in the future that needs a simple way to get a string from an enum which is defined as an integer type.
enum Error: UInt {
case Teapot = 418
case Kettle = 419
static func errorMessage(code: UInt) -> String {
guard let error = Error(rawValue: code) else {
return "Unknown Error Code"
}
switch error {
case .Teapot:
return "I'm a teapot!"
case .Kettle:
return "I'm a kettle!"
}
}
}
This way, we can get the errorMessage two ways:
rawValue
we define for the enum)Option 1:
let option1 = Error.errorMessage(code: 418)
print(option1) //prints "I'm a teapot!"
Option 2:
let option2 = Error.errorMessage(code: Error.Teapot.rawValue)
print(option2) //prints "I'm a teapot!"
Upvotes: 0
Reputation: 6805
I created a way of simulating this (No different than what Marcos Crispino suggested on his answer). Far from a perfect solution but allows us to avoid those nasty switch cases for every different property we want to get.
The trick is to use a struct as the "properties/data" holder and using it as a RawValue in the enum itself.
It has a bit of duplication but it's serving me well so far. Every time you want to add a new enum case, the compiler will remind you to fill in the extra case in the rawValue getter, which should remind you to update the init?
which would remind you to create the new static property on the struct.
Code to the Gist:
enum VehicleType : RawRepresentable {
struct Vehicle : Equatable {
let name: String
let wheels: Int
static func ==(l: Vehicle, r: Vehicle) -> Bool {
return l.name == r.name && l.wheels == r.wheels
}
static var bike: Vehicle {
return Vehicle(name: "Bicycle", wheels: 2)
}
static var car: Vehicle {
return Vehicle(name: "Automobile", wheels: 4)
}
static var bus: Vehicle {
return Vehicle(name: "Autobus", wheels: 8)
}
}
typealias RawValue = Vehicle
case car
case bus
case bike
var rawValue: RawValue {
switch self {
case .car:
return Vehicle.car
case .bike:
return Vehicle.bike
case .bus:
return Vehicle.bus
}
}
init?(rawValue: RawValue) {
switch rawValue {
case Vehicle.bike:
self = .bike
case Vehicle.car:
self = .car
case Vehicle.bus:
self = .bus
default: return nil
}
}
}
VehicleType.bike.rawValue.name
VehicleType.bike.rawValue.wheels
VehicleType.car.rawValue.wheels
VehicleType(rawValue: .bike)?.rawValue.name => "Bicycle"
VehicleType(rawValue: .bike)?.rawValue.wheels => 2
VehicleType(rawValue: .car)?.rawValue.name => "Automobile"
VehicleType(rawValue: .car)?.rawValue.wheels => 4
VehicleType(rawValue: .bus)?.rawValue.name => "Autobus"
VehicleType(rawValue: .bus)?.rawValue.wheels => 8
Upvotes: 3
Reputation: 737
One workaround if you wanted to have many static properties for a YourError could be to import a property list; you could set the root object to a dictionary, with your enum raw value as the key for each object, allowing you to easily retrieve static structured data for the object.
This has an example of importing and using a plist: http://www.spritekitlessons.com/parsing-a-property-list-using-swift/
That might be overkill for simply an error description, for which you could just use a hardcoded static function with a switch statement for your enum values, that returns the error string you need. Simply place the static function in the same .swift file as your enum.
For instance,
static func codeForError(error : YourErrorType) -> Int {
switch(error) {
case .Teapot:
return "I'm a Teapot"
case .Teacup:
return "I'm a Teacup"
...
default:
return "Unknown Teaware Error"
}
}
This has the benefit (compared to the .plist solution) of better accomodating localization. However, a .plist could just contain a key used for retrieving the proper localization, instead of a error string, for this purpose.
Upvotes: 2
Reputation: 72760
No, an enum cannot have multiple raw values - it has to be a single value, implementing the Equatable
protocol, and be literal-convertible as described in the documentation.
I think the best approach in your case is to use the error code as raw value, and a property backed by a prepopulated static dictionary with the error code as key and the text as value.
Upvotes: 20
Reputation: 8218
No, you cannot have multiple raw values associated with an enum.
In your case, you could have the raw value to be equal to the code, and have an associated value with the description. But I think the computed properties approach is the best option here.
Upvotes: 2