Reputation: 12697
I have multiple Series with a MultiIndex and I'd like to combine them into a single DataFrame which joins them on the common index names (and broadcasts values). The setup is like
import pandas as pd
a=pd.Series([12,13,14,15], index=pd.MultiIndex.from_tuples([(1,1),(1,2),(2,1),(2,2)], names=["i", "j"]))
b=pd.Series([21,22], index=pd.MultiIndex.from_tuples([(1,),(2,)], names=["i"]))
How can I get the result
i j a b
1 1 12 21
1 2 13 21
2 1 14 22
2 2 15 22
Can you suggest how to get this result? Ideally this should also work on more than two Series.
Upvotes: 6
Views: 9018
Reputation: 48964
Since pandas 0.24.0, it is possible to merge multiindexed data frames with each other using the overlapping index levels. As per the release notes:
index_left = pd.MultiIndex.from_tuples([('K0', 'X0'), ('K0', 'X1'),
('K1', 'X2')],
names=['key', 'X'])
left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
'B': ['B0', 'B1', 'B2']}, index=index_left)
index_right = pd.MultiIndex.from_tuples([('K0', 'Y0'), ('K1', 'Y1'),
('K2', 'Y2'), ('K2', 'Y3')],
names=['key', 'Y'])
right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'],
'D': ['D0', 'D1', 'D2', 'D3']}, index=index_right)
left.join(right)
Out:
A B C D
key X Y
K0 X0 Y0 A0 B0 C0 D0
X1 Y0 A1 B1 C0 D0
K1 X2 Y1 A2 B2 C1 D1
[3 rows x 4 columns]
Upvotes: 0